SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Petrova Tatiana V) "

Search: WFRF:(Petrova Tatiana V)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arroz-Madeira, Silvia, et al. (author)
  • Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells
  • 2023
  • In: Circulation Research. - : Wolters Kluwer. - 0009-7330 .- 1524-4571. ; 132:9, s. 1203-1225
  • Research review (peer-reviewed)abstract
    • Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
  •  
2.
  • Bernier-Latmani, Jeremiah, et al. (author)
  • ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5(+) villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5(+) ADAMTS18(+) telocytes are necessary to maintain a "just-right" level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18(+) telocytes maintain a "just-right" level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
  •  
3.
  • Bovay, Esther, et al. (author)
  • Multiple roles of lymphatic vessels in peripheral lymph node development
  • 2018
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 215:11, s. 2760-2777
  • Journal article (peer-reviewed)abstract
    • The mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using highresolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage. This process is independent of lymphatic vasculature, but lymphatic vessels are indispensable for the transport of LTi cells that egress from blood capillaries elsewhere and serve as an essential LN expansion reservoir. At later stages, lymphatic collecting vessels ensure efficient LTi cell transport and formation of the LN capsule and subcapsular sinus. Perinodal lymphatics also promote local interstitial flow, which cooperates with lymphotoxin-beta signaling to amplify stromal CXCL13 production and thereby promote LTi cell retention. Our data unify previous models of LN development by showing that lymphatics intervene at multiple points to assist LN expansion and identify a new role for mechanical forces in LN development.
  •  
4.
  • Gramolelli, Silvia, et al. (author)
  • PROX1 is a transcriptional regulator of MMP14
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
  •  
5.
  • Hernández Vásquez, Magda, et al. (author)
  • Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels
  • 2021
  • In: EMBO Journal. - : EMBO Press. - 0261-4189 .- 1460-2075. ; 40:12
  • Journal article (peer-reviewed)abstract
    • The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.
  •  
6.
  •  
7.
  • Lyons, Oliver, et al. (author)
  • Human venous valve disease caused by mutations in FOXC2 and GJC2
  • 2017
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 214:8, s. 2437-2452
  • Journal article (peer-reviewed)abstract
    • Venous valves (VVs) prevent venous hypertension and ulceration. We report that FOXC2 and GJC2 mutations are associated with reduced VV number and length. In mice, early VV formation is marked by elongation and reorientation ("organization") of Prox1(hi) endothelial cells by postnatal day 0. The expression of the transcription factors Foxc2 and Nfatc1 and the gap junction proteins Gjc2, Gja1, and Gja4 were temporospatially regulated during this process. Foxc2 and Nfatc1 were coexpressed at P0, and combined Foxc2 deletion with calcineurin-Nfat inhibition disrupted early Prox1(hi) endothelial organization, suggesting cooperative Foxc2-Nfatc1 patterning of these events. Genetic deletion of Gjc2, Gja4, or Gja1 also disrupted early VV Prox1(hi) endothelial organization at postnatal day 0, and this likely underlies the VV defects seen in patients with GJC2 mutations. Knockout of Gja4 or Gjc2 resulted in reduced proliferation of Prox1(hi) valve-forming cells. At later stages of blood flow, Foxc2 and calcineurin-Nfat signaling are each required for growth of the valve leaflets, whereas Foxc2 is not required for VV maintenance.
  •  
8.
  • Nowak-Sliwinska, Patrycja, et al. (author)
  • Consensus guidelines for the use and interpretation of angiogenesis assays
  • 2018
  • In: Angiogenesis. - : Springer. - 0969-6970 .- 1573-7209. ; 21:3, s. 425-532
  • Research review (peer-reviewed)abstract
    • The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
  •  
9.
  • Petrova, Tatiana V, et al. (author)
  • Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor.
  • 2002
  • In: EMBO Journal. - 0261-4189 .- 1460-2075. ; 21:17
  • Journal article (peer-reviewed)abstract
    • Lymphatic vessels are essential for fluid homeostasis, immune surveillance and fat adsorption, and also serve as a major route for tumor metastasis in many types of cancer. We found that isolated human primary lymphatic and blood vascular endothelial cells (LECs and BECs, respectively) show interesting differences in gene expression relevant for their distinct functions in vivo. Although these phenotypes are stable in vitro and in vivo, overexpression of the homeobox transcription factor Prox-1 in the BECs was capable of inducing LEC-specific gene transcription in the BECs, and, surprisingly, Prox-1 suppressed the expression of approximately 40% of the BEC-specific genes. Prox-1 did not have global effects on the expression of LEC-specific genes in other cell types, except that it up-regulated cyclin E1 and E2 mRNAs and activated the cyclin e promoter in various cell types. These data suggest that Prox-1 acts as a cell proliferation inducer and a fate determination factor for the LECs. Furthermore, the data provide insights into the phenotypic diversity of endothelial cells and into the possibility of transcriptional reprogramming of differentiated endothelial cells.
  •  
10.
  • Sabine, Amelie, et al. (author)
  • FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
  • 2015
  • In: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:10, s. 3861-3877
  • Journal article (peer-reviewed)abstract
    • Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
  •  
11.
  • Sabine, Amélie, et al. (author)
  • Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation.
  • 2012
  • In: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 22:2
  • Journal article (peer-reviewed)abstract
    • Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress in vitro. Mechanistically, PROX1, FOXC2, and flow coordinately control expression of the gap junction protein connexin37 and activation of calcineurin/NFAT signaling. Connexin37 and calcineurin are required for the assembly and delimitation of lymphatic valve territory during development and for its postnatal maintenance. We propose a model in which regionally increased levels/activation states of transcription factors cooperate with mechanotransduction to induce a discrete cell-signaling pattern and morphogenetic event, such as formation of lymphatic valves. Our results also provide molecular insights into the role of endothelial cell identity in the regulation of vascular mechanotransduction.
  •  
12.
  • Sainz-Jaspeado, Miguel, et al. (author)
  • Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium
  • 2021
  • In: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 144:20, s. 1629-1645
  • Journal article (peer-reviewed)abstract
    • Background: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease.Methods: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes.Results: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd(-/-) mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs.Conclusions: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12
Type of publication
journal article (10)
research review (2)
Type of content
peer-reviewed (12)
Author/Editor
Petrova, Tatiana V. (12)
Mäkinen, Taija (6)
Alitalo, Kari (4)
Kiefer, Friedemann (3)
Betsholtz, Christer (2)
Martinez-Corral, Ine ... (2)
show more...
He, Liqun (2)
Halin, Cornelia (2)
Griffioen, Arjan W. (1)
Aspenström, Pontus (1)
Claesson-Welsh, Lena (1)
Yla-Herttuala, Seppo (1)
Modarai, Bijan (1)
Jin, Yi (1)
Betsholtz, Christer, ... (1)
Franco-Cereceda, And ... (1)
Rantanen, Ville (1)
Olsson, Anna-Karin (1)
Irving, Melita (1)
Lehti, Kaisa (1)
Vanlandewijck, Micha ... (1)
Zamboni, Nicola (1)
Virtanen, Ismo (1)
Daniel, Geoffrey (1)
Fernando, Dinesh (1)
Pietras, Kristian (1)
Dimberg, Anna (1)
Haglund, Caj (1)
Carmeliet, Peter (1)
Kritikos, Ioannis (1)
Pili, Roberto (1)
Schulte-Merker, Stef ... (1)
Arroz-Madeira, Silvi ... (1)
Bekkhus, Tove (1)
Ulvmar, Maria H., Se ... (1)
Kilimann, Manfred W. (1)
Plunde, Oscar (1)
Gong, Yan (1)
Hautaniemi, Sampsa (1)
Harris, Adrian L. (1)
Bussolino, Federico (1)
Jackson, David G. (1)
Li Jeon, Noo (1)
Smith, Alberto (1)
Miura, Naoyuki (1)
Saarela, Janna (1)
Ulvmar, Maria H. (1)
Sun, Ying (1)
Olsson, Cecilia (1)
Bernier-Latmani, Jer ... (1)
show less...
University
Uppsala University (11)
Karolinska Institutet (4)
University of Gothenburg (1)
Lund University (1)
Swedish University of Agricultural Sciences (1)
Language
English (12)
Research subject (UKÄ/SCB)
Medical and Health Sciences (10)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view