SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Plez B.) "

Search: WFRF:(Plez B.)

  • Result 1-46 of 46
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Miglio, A., et al. (author)
  • PLATO as it is : A legacy mission for Galactic archaeology
  • 2017
  • In: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:6, s. 644-661
  • Journal article (peer-reviewed)abstract
    • Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but it will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age-initial mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental prerequisite to then reach the more ambitious goal of a similar level of accuracy, which will be possible only if we have at hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal that conveniently falls within the main aims of PLATO's core science. We therefore strongly endorse PLATO's current design and proposed observational strategy, and conclude that PLATO, as it is, will be a legacy mission for Galactic archaeology.
  •  
2.
  • Rauer, H., et al. (author)
  • The PLATO 2.0 mission
  • 2014
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Journal article (peer-reviewed)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
3.
  • Decin, L, et al. (author)
  • ISO-SWS calibration and the accurate modelling of cool-star atmospheres - I. Method
  • 2000
  • In: ASTRONOMY AND ASTROPHYSICS. - : SPRINGER-VERLAG. - 0004-6361. ; 364:1, s. 137-156
  • Journal article (peer-reviewed)abstract
    • A detailed spectroscopic study of the ISO-SWS data of the red giant alpha Tau is presented, which enables not only the accurate determination of the stellar parameters of alpha Tau, but also serves as a critical review of the ISO-SWS calibration. This stu
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Gustafsson, B., et al. (author)
  • A Grid of Model Atmospheres for Cool Stars
  • 2003
  • In: "Stellar Atmosphere Modeling", ASP Conference Proceedings. - : Astronomical Society of the Pacific. - 1583811311 ; , s. p. 331-334
  • Conference paper (other academic/artistic)
  •  
8.
  • Lebzelter, T., et al. (author)
  • Comparative modelling of the spectra of cool giants
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. A108-
  • Journal article (peer-reviewed)abstract
    • Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
  •  
9.
  • Bonifacio, P., et al. (author)
  • First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants
  • 2009
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 501:2, s. 519-530
  • Journal article (peer-reviewed)abstract
    • Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
  •  
10.
  • Cayrel, R., et al. (author)
  • Determination of [O/Fe] in BD +23 3130 from ESO VLT-UVES observations
  • 2001
  • In: New Astronomy Reviews. - 1872-9630. ; 45:8, s. 533-535
  • Journal article (peer-reviewed)abstract
    • We report a new determination of [O/Fe, the relative logarithmicabundance of O/Fe with respect to the Sun, for the very metal-poor starBD+23 3130 ([Fe/H=-2.6). The value was derived from the forbidden line[O I at 630 nm and from six weak Fe II lines, with a S/N ratiosubstantially larger than those obtained before, thanks to theefficiency of the VLT-UVES instrument at Paranal. We obtain[O/Fe=0.71+/-0.25, a value 0.36 dex higher than the value obtained fromthe same lines by Fulbright and Kraft [AJ 118 (1999) 527, but 0.46lower than the one derived by Israelian et al. [ApJ 507 (1998) 805 fromthe UV OH bands.
  •  
11.
  •  
12.
  • Cayrel, R., et al. (author)
  • First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy
  • 2004
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 416:3, s. 1117-1138
  • Journal article (peer-reviewed)abstract
    • In the framework of the ESO Large Programme ``First Stars'', veryhigh-quality spectra of some 70 very metal-poor dwarfs and giants wereobtained with the ESO VLT and UVES spectrograph. These stars are likelyto have descended from the first generation(s) of stars formed after theBig Bang, and their detailed composition provides constraints on issuessuch as the nature of the first supernovae, the efficiency of mixingprocesses in the early Galaxy, the formation and evolution of the haloof the Galaxy, and the possible sources of reionization of the Universe.This paper presents the abundance analysis of an homogeneous sample of35 giants selected from the HK survey of Beers et al. (cite{BPS92},cite{Be99}), emphasizing stars of extremely low metallicity: 30 of our35 stars are in the range -4.1 <[Fe/H]< -2.7, and 22 stars have[Fe/H] < -3.0. Our new VLT/UVES spectra, at a resolving power ofR∼45 000 and with signal-to-noise ratios of 100-200 per pixel overthe wavelength range 330-1000 nm, are greatly superior to those of theclassic studies of McWilliam et al. (cite{MPS95}) and Ryan et al.(cite{RNB96}).The immediate objective of the work is to determine precise,comprehensive, and homogeneous element abundances for this large sampleof the most metal-poor giants presently known. In the analysis wecombine the spectral line modeling code ``Turbospectrum'' with OSMARCSmodel atmospheres, which treat continuum scattering correctly and thusallow proper interpretation of the blue regions of the spectra, wherescattering becomes important relative to continuous absorption (λ< 400 nm). We obtain detailed information on the trends of elementalabundance ratios and the star-to-star scatter around those trends,enabling us to separate the relative contributions of cosmic scatter andobservational/analysis errors.Abundances of 17 elements from C to Zn have been measured in all stars,including K and Zn, which have not previously been detected in starswith [Fe/H] < -3.0. Among the key results, we discuss the oxygenabundance (from the forbidden [OI] line), the different and sometimescomplex trends of the abundance ratios with metallicity, the very tightrelationship between the abundances of certain elements (e.g., Fe andCr), and the high [Zn/Fe] ratio in the most metal-poor stars. Within theerror bars, the trends of the abundance ratios with metallicity areconsistent with those found in earlier literature, but in many cases thescatter around the average trends is much smaller than found in earlierstudies, which were limited to lower-quality spectra. We find that thecosmic scatter in several element ratios may be as low as 0.05 dex.The evolution of the abundance trends and scatter with decliningmetallicity provides strong constraints on the yields of the firstsupernovae and their mixing into the early ISM. The abundance ratiosfound in our sample do not match the predicted yields frompair-instability hypernovae, but are consistent with element productionby supernovae with progenitor masses up to 100 M⊙.Moreover, the composition of the ejecta that have enriched the matterBased on observations obtained in the frame of the ESO programme ID165.N-0276(A).Full Tables 3 and 8 are available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/1117 This work hasmade use of the SIMBAD database.
  •  
13.
  • Cayrel, R., et al. (author)
  • Measurement of stellar age from uranium decay
  • 2001
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 409:6821, s. 691-692
  • Journal article (peer-reviewed)abstract
    • The ages of the oldest stars in the Galaxy indicate when star formationbegan, and provide a minimum age for the Universe. Radioactive dating ofmeteoritic material and stars relies on comparing the present abundanceratios of radioactive and stable nuclear species to the theoreticallypredicted ratios of their production. The radioisotope 232Th(half-life 14Gyr) has been used to date Galactic stars, but it decays byonly a factor of two over the lifetime of the Universe. 238U(half-life 4.5Gyr) is in principle a more precise age indicator, buteven its strongest spectral line, from singly ionized uranium at awavelength of 385.957nm, has previously not been detected in stars. Herewe report a measurement of this line in the very metal-poor starCS31082-0018, a star which is strongly overabundant in itsheavy elements. The derived uranium abundance, log(U/H) = -13.7 +/- 0.14+/- 0.12 yields an age of 12.5 +/- 3Gyr, though this is still modeldependent. The observation of this cosmochronometer gives the mostdirect age determination of the Galaxy. Also, with improved theoreticaland laboratory data, it will provide a highly precise lower limit to theage of the Universe.
  •  
14.
  • Chiavassa, A, et al. (author)
  • Radiative hydrodynamics simulations of red supergiant stars I. interpretation of interferometric observations
  • 2009
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 506:3, s. 1351-1365
  • Journal article (peer-reviewed)abstract
    • Context. It has been proposed that convection in red supergiant (RSG) stars produces large-scale granules causing observable surface inhomogeneities. This convection is also extremely vigorous and is suspected to be one of the main causes of mass-loss in RSGs. It should thus be understood in detail. Evidence has accumulated of asymmetries in the photospheres of RSGs, but detailed studies of granulation are still lacking. Interferometric observations provide an innovative way of addressing this question, but they are still often interpreted using smooth symmetrical limb-darkened intensity distributions, or simple, spotted, ad hoc models. Aims. We explore the impact of the granulation on visibility curves and closure phases using the radiative transfer code OPTIM3D. We simultaneously assess how 3D simulations of convection in RSG with (COBOLD)-B-5 can be tested by comparing with these observations. Methods. We use 3D radiative hydrodynamical (RHD) simulations of convection to compute intensity maps at various wavelengths and time, from which we derive interferometric visibility amplitudes and phases. We study their behaviour with time, position angle, and wavelength, and compare them to observations of the RSG alpha Ori. Results. We provide average limb-darkening coefficients for RSGs. We describe the prospects for the detection and characterization of granulation (i.e., contrast, size) on RSGs. We demonstrate that our RHD simulations provide an excellent fit to existing interferometric observations of alpha Ori, in contrast to limb darkened disks. This confirms the existence of large convective cells on the surface of Betelgeuse.
  •  
15.
  • Chiavassa, A., et al. (author)
  • Radiative hydrodynamics simulations of red supergiant stars II. Simulations of convection on Betelgeuse match interferometric observations
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 515, s. A12-
  • Journal article (peer-reviewed)abstract
    • Context. The red supergiant (RSG) Betelgeuse is an irregular variable star. Convection may play an important role in understanding this variability. Interferometric observations can be interpreted using sophisticated simulations of stellar convection. Aims. We compare the visibility curves and closure phases obtained from our 3D simulation of RSG convection with CO5BOLD to various interferometric observations of Betelgeuse from the optical to the H band to characterize and measure the convection pattern on this star. Methods. We use a 3D radiative-hydrodynamics (RHD) simulation to compute intensity maps in different filters and thus derive interferometric observables using the post-processing radiative transfer code OPTIM3D. The synthetic visibility curves and closure phases are compared to observations. Results. We provide a robust detection of the granulation pattern on the surface of Betelgeuse in both the optical and the H band based on excellent fits to the observed visibility points and closure phases. We determine that the Betelgeuse surface in the H band is covered by small to medium scale (5-15 mas) convection-related surface structures and a large (approximate to 30 mas) convective cell. In this spectral region, H2O molecules are the main absorbers and contribute to both the small structures and the position of the first null of the visibility curve (i.e., the apparent stellar radius).
  •  
16.
  • Chiavassa, A., et al. (author)
  • VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 511, s. A51-
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the characterization of molecular layers above the continuum forming photosphere. Methods. We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 mu m with a spectral resolution of approximate to 35 and baselines ranging from 15 to 88 m. We performed independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model. We also compared the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results. Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At approximate to 2.00 mu m and in the region 2.35-2.50 mu m, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of Theta = 8.82 +/- 0.50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions. We show that the atmosphere of VX Sgr seems to resemble Mira/AGB star model atmospheres more closely than do RSG model atmospheres. In particular, we see molecular ( water) layers that are typical of Mira stars.
  •  
17.
  • Depagne, E., et al. (author)
  • First Stars. II. Elemental abundances in the extremely metal-poor star CS 22949--037. A diagnostic of early massive supernovae
  • 2002
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 390:1, s. 187-198
  • Journal article (peer-reviewed)abstract
    • CS 22949-037 is one of the most metal-poor giants known ([Fe/H]~-4.0),and it exhibits large overabundances of carbon and nitrogen (Norris etal.). Using VLT-UVES spectra of unprecedented quality, regardingresolution and S/N ratio, covering a wide wavelength range (from lambda= 350 to 900 nm), we have determined abundances for 21 elements in thisstar over a wide range of atomic mass. The major new discovery is anexceptionally large oxygen enhancement, [O/Fe] = 1.97+/-0.1, as measuredfrom the [O I] line at 630.0 nm. We find an enhancement of [N/Fe] of2.56+/- 0.2, and a milder one of [C/Fe] = 1.17+/-0.1, similar to thosealready reported in the literature. This implies Zstar =0.01Zsun. We also find carbon isotopic ratios12C/13C =4+/-2.0 and 13C/14N=0.03 +0.035-0.015, close to the equilibrium valueof the CN cycle. Lithium is not detected. Na is strongly enhanced([Na/Fe] = +2.1 +/- 0.2), while S and K are not detected. Thesilicon-burning elements Cr and Mn are underabundant, while Co and Znare overabundant ([Zn/Fe]=+0.7). Zn is measured for the first time insuch an extremely metal-poor star. The abundances of the neutron-captureelements Sr, Y, and Ba are strongly decreasing with the atomic number ofthe element: [Sr/Fe] ~ +0.3, [Y/Fe] ~ -0.1, and [Ba/Fe] ~ -0.6. Amongpossible progenitors of CS 22949-037, we discuss the pair-instabilitysupernovae. Such very massive objects indeed produce large amounts ofoxygen, and have been found to be possible sources of primary nitrogen.However, the predicted odd/even effect is too large, and the predictedZn abundance much too low. Other scenarios are also discussed. Inparticular, the yields of a recent model (Z35Z) from Heger and Woosleyare shown to be in fair agreement with the observations. The onlydiscrepant prediction is the very low abundance of nitrogen, possiblycurable by taking into account other effects such as rotationallyinduced mixing. Alternatively, the absence of lithium in our star, andthe values of the isotopic ratios 12C/13C and13C/14N close to the equilibrium value of the CNcycle, suggest that the CNO abundances now observed might have beenaltered by nuclear processing in the star itself. A 30-40Msun supernova, with fallback, seems the most likelyprogenitor for CS 22949-037. Based on observations made with the ESOVery Large Telescope at Paranal Observatory, Chile (programme ID165.N-0276(A)).
  •  
18.
  • François, P., et al. (author)
  • First Stars. III. A detailed elemental abundance study of four extremely metal-poor giant stars
  • 2003
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 403:3, s. 1105-1114
  • Journal article (peer-reviewed)abstract
    • This paper reports detailed abundance analyses for four extremelymetal-poor (XMP) giant stars with [Fe/H]<-3.8, based onhigh-resolution, high-S/N spectra from the ESO VLT (Kueyen/UVES) and LTEmodel atmosphere calculations. The derived [alpha /Fe] ratios in oursample exhibit a small dispersion, confirming previous findings in theliterature, i.e. a constant overabundance of the alpha -elements with avery small (if any) dependence on [Fe/H]. In particular, the very smallscatter we determine for [Si/Fe] suggests that this element shows aconstant overabundance at very low metallicity, a conclusion which couldnot have been derived from the widely scattered [Si/Fe] values reportedin the literature for less metal-poor stars. For the iron-peak elements,our precise abundances for the four XMP stars in our sample confirm thedecreasing trend of Cr and Mn with decreasing [Fe/H], as well as theincreasing trend for Co and the absence of any trend for Sc and Ni. Incontrast to the significant spread of the ratios [Sr/Fe] and [Ba/Fe], wefind [Sr/Ba] in our sample to be roughly solar, with a much lowerdispersion than previously found for stars in the range -3.5 < [Fe/H]< -2.5.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (Large Programme ID 165.N-0276(A)).The complete version of Table 5 is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp:/ /cdsweb.u-strasbg.fr/cgi-bin/qcat?J /A+A/403/1105
  •  
19.
  • Hill, V., et al. (author)
  • First stars. I. The extreme r-element rich, iron-poor halo giant CS31082-001. Implications for the r--process site(s) and radioactive cosmochronology
  • 2002
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 387:2, s. 560-579
  • Research review (peer-reviewed)abstract
    • We present a high-resolution ( R= 75 000, S/ N ) spectroscopic analysis of the bright ( V= 11.7), extreme halo giant CS 31082-001([Fe/H] = -2.9), obtained in an ESO-VLT Large Programme dedicated to very metal-poor stars. We find CS 31082-001 to be extremely rich in r-process elements, comparable in this respect only to the similarly metal-poor, but carbon-enriched, giant CS 22892-052. As a result of the extreme overabundance of the heaviest r-process elements, and negligible blending from CH and CN molecular lines, a reliable measurement is obtained of the U II line at 386 nm, for the first time in a halo star, along with numerous lines of Th II, as well as lines of 25 other r-process elements. Abundance estimates for a total of 43 elements (44 counting Hydrogen) are reported in CS 31082-001, almost half of the entire periodic table. The main atmospheric parameters of CS 31082-001 are as follows: K, (cgs), [Fe/H] = -2.9 (in LTE), and microturbulence 1.8 0.2 km s -1. Carbon and nitrogen are not significantly enhanced relative to iron. As usual in giant stars, Li is depleted by dilution ( (Li/H) = 0.85). The -elements show the usual enhancements with respect to iron, with [O/Fe] (from [O I] 6300 Å), [Mg/Fe] , [Si/Fe] , and [Ca/Fe] , while [Al/Fe] is near -0.5. The r-process elements show unusual patterns: among the lightest elements ( 40), Sr and Zr follow the Solar r-element distribution, but Ag is down by 0.8 dex. All elements with 56 Z 72 follow the Solar r-element pattern, reduced by about 1.25 dex. Accordingly, the [ r/Fe] enhancement is about +1.7 dex (a factor of 50), very similar to that of CS 22892-052. Pb, in contrast, seems to be below the shifted Solar r-process distribution, possibly indicating an error in the latter, while thorium is more enhanced than the lighter nuclides. In CS 31082-001, log(Th/Eu) is , higher than in the Solar System (-0.46) or in CS 22892-052 (-0.66). If CS 31082-001 and CS 22892-052 have similar ages, as expected for two extreme halo stars, this implies that the production ratios were different by about 0.4 dex for the two objects. Conversely, if the Th/Eu production ratio were universal, an age of 15 Gyr for CS 22892-052 would imply a negative age for CS 31082-001. Thus, while a universal production ratio for the r-process elements seems to hold in the interval 56 Z 72, it breaks down in the actinide region. When available, the U/Th is thus preferable to Th/Eu for radioactive dating, for two reasons: (i) because of its faster decay rate and smaller sensitivity to observational errors, and (ii) because the inital production ratio of the neighboring nuclides 238U and 232Th is more robustly predicted than the 151Eu/ 232Th ratio. Our current best estimate for the age of CS 31082-001 is Gyr. However, the computed actinide production ratios should be verified by observations of daughter elements such as Pb and Bi in the same star, which are independent of the subsequent history of star formation and nucelosynthesis in the Galaxy.
  •  
20.
  • Kochukhov, Oleg, et al. (author)
  • Magnetic fields in M dwarf stars from high-resolution infrared spectra
  • 2009
  • In: COOL STARS, STELLAR SYSTEMS AND THE SUN: Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. - : AIP. - 9780735406278 ; , s. 124-129
  • Conference paper (peer-reviewed)abstract
    • Magnetic fields play a central role in the atmospheric properties and variability of active M dwarfs. Information on the strength and structure of magnetic fields in these objects is vital for understanding dynamo mechanisms and magnetically-driven activity of low-mass stars, and for constraining theories of star formation and evolution. We have initiated the first systematic high-resolution survey of magnetically sensitive infrared spectral lines in M dwarf stars using the CRIRES instrument at the ESO VLT. We have completed observations for a sample of 35 active and inactive M dwarfs. Here we report first results of our project, demonstrating a clear detection of magnetic splitting of lines in the spectra of several M dwarfs. We assess diagnostic potential of different Zeeman-sensitive lines in the observed spectral region and apply spectrum synthesis modelling to infer magnetic field properties of selected M dwarfs.
  •  
21.
  • Plez, B., et al. (author)
  • Lead abundance in the uranium star CS 31082-001
  • 2004
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 428:1, s. 9-12
  • Journal article (peer-reviewed)abstract
    • In a previous paper we were able to measure the abundance of uranium andthorium in the very-metal poor halo giant BPS CS31082-001, but only obtained an upper limit for the abundanceof lead (Pb). We have got from ESO 17 h of additional exposure on thisstar in order to secure a detection of the minimum amount of leadexpected to be present in CS 31082-001, the amountarising from the decay of the original content of Th and U in the star.We report here this successful detection. We find an LTE abundancelog(Pb/H)+12=-0.55 ± 0.15 dex, one dex below the upper limitsgiven by other authors for the similar stars CS22892-052 and BD +17°3248, alsoenhanced in r-process elements. From the observed present abundances ofTh and U in the star, the expected amount of Pb produced by the decay of232Th, and 238U alone, over 12-15 Gyr is-0.73± 0.17 dex. The decay of 235U is more difficultto estimate, but is probably slightly below the contribution of238U, making the contribution of the 3 actinides onlyslightly below, or even equal to, the measured abundance. Thecontribution from the decay of 234U has was not included, forlack of published data. In this sense our determination is a lower limitto the contribution of actinides to lead production. We comment thisresult, and we note that if a NLTE analysis, not yet possible, doublesour observed abundance, the decay of the 3 actinides will stillrepresent 50 per cent of the total lead, a proportion higher than thevalues considered so far in the literature.Based on observations obtained with the Very Large Telescope of theEuropean Southern Observatory at Paranal, Chile.
  •  
22.
  • Sivarani, T., et al. (author)
  • First stars IV. CS 29497-030: Evidence for operation of the s-process at very low metallicity
  • 2004
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 413:3, s. 65-1073
  • Research review (peer-reviewed)abstract
    • We present an abundance analysis of the very metal-poor, carbon-enhancedstar CS 29497-030. Our results indicate that this unusually hot turnoffstar (Teff = 6650 K, log g = 3.5) has a metallicity [Fe/H] =-2.8, and exhibits large overabundances of carbon ([C/Fe] = +2.38),nitrogen ([N/Fe] = +1.88), and oxygen ([O/Fe] = +1.67). This star alsoexhibits a large enhancement in its neutron-capture elements; thepattern follows that expected to arise from the s-process. Inparticular, the Pb abundance is found to be very high with respect toiron ([Pb/Fe] = +3.5), and also with respect to the second peaks-process elements (e.g., Ba, La, Ce, Nd), which fits into the newlyintroduced classification of lead (Pb) stars. The known spectroscopicbinary status of this star, along with the observed s-process abundancepattern, suggest that it has accreted matter from a companion, whichformerly was an Asymptotic Giant-Branch (AGB) star. In a preliminaryanalysis, we have also identified broad absorption lines of metallicspecies that suggest a large axial rotational velocity for this star,which may be the result of spin-up associated with the accretion ofmaterial from its previous AGB companion. In addition, this star isclearly depleted in the light element Li. When considered along with itsrather high inferred temperature, these observations are consistent withthe expected properties of a very low metallicity halo blue straggler.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (program ID 165.N-0276(A)).Table ef{tab6} is only available in electronic form athttp://www.edpsciences.org
  •  
23.
  • Sivarani, T., et al. (author)
  • First stars X. The nature of three unevolved carbon-enhanced metal-poor stars
  • 2006
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 459:1, s. 125-135
  • Journal article (peer-reviewed)abstract
    • Context. On the order of 20% of the very metal-poor stars in the Galaxy exhibit large carbon enhancements. It is important to establish which astrophysical sites and processes are responsible for the elemental abundance patterns of this early Galactic population. Aims. We seek to understand the nature of the progenitors of three main-sequence turnoff Carbon-Enhanced Metal-Poor (CEMP) stars, CS 31080-095, CS 22958-042, and CS 29528-041, based on a detailed abundance analysis. Methods. From high-resolution VLT/UVES spectra (R similar to 43 000), we determine abundances or upper limits for Li, C, N, O, and other important elements, as well as C-12/C-13 isotopic ratios. Results. All three stars have -3.30 <= [Fe/H]<= -2.85 and moderate to high CNO abundances. CS 22958-042 is one of the most carbon-rich CEMP stars known ([C/Fe] = +3.2), while CS 29528-041 (one of the few N-enhanced metal-poor stars known) is one of the most nitrogen rich ([N/Fe] = +3.0). Oxygen is very high in CS 31080-095 ([O/Fe] = +2.35) and in CS 22958-042 ([O/Fe] = +1.35). All three stars exhibit [Sr/Fe] < 0; Ba is not detected in CS 22958-042 ([Ba/Fe] < -0.53),but it is moderately enhanced ([Ba/Fe] similar to 1) in the other two stars. CS 22958-042 displays one of the largest sodium overabundances yet found in CEMP stars ([Na/Fe] = +2.8). CS 22958-042 has C-12/C-13 = 9, similar to most other CEMP stars without enhanced neutron-capture elements, while C-12/C-13 = 40 in CS 31080-095. CS 31080-095 and CS 29528-041 have A(Li) similar to 1.7, below the Spite Plateau, while Li is not detected in CS 22958-042. Conclusions. CS 22958-042 is a CEMP-no star, but the other two stars are in no known class of CEMP star and thus either constitute a new class or are a link between the CEMP-no and CEMP-s classes, adding complexity to the abundance patterns for CEMP stars. We interpret the abundance patterns in our stars to imply that current models for the presumed AGB binary progenitors lack an extra-mixing process, similar to those apparently operating in RGB stars.
  •  
24.
  • Spite, M., et al. (author)
  • First stars IX - Mixing in extremely metal-poor giants. Variation of the C-12/C-13, [Na/Mg] and [Al/Mg] ratios
  • 2006
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 455:1, s. 291-301
  • Journal article (peer-reviewed)abstract
    • Context. Extremely metal-poor (EMP) stars preserve a fossil record of the composition of the ISM when the Galaxy formed. It is crucial, however, to verify whether internal mixing has modified their surface composition, especially in the giants where most elements can be studied. Aims. We aim to understand the CNO abundance variations found in some, but not all EMP field giants analysed earlier. Mixing beyond the first dredge-up of standard models is required, and its origin needs clarification. Methods. The C-12/C-13 ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters and should be uniformly high in near-primordial gas. We have measured C-12 and C-13 abundances in 35 EMP giants (including 22 with [Fe/H] < -3.0) from high-quality VLT/UVES spectra analysed with LTE model atmospheres. Correlations with other abundance data are used to study the depth of mixing. Results. The C-12/C-13 ratio is found to correlate with [C/Fe] (and Li/H), and clearly anti-correlate with [N/Fe], as expected if the surface abundances are modified by CNO processed material from the interior. Evidence for such deep mixing is observed in giants above log L/L-circle dot = 2.6, brighter than in less metal-poor stars, but matching the bump in the luminosity function in both cases. Three of the mixed stars are also Na- and Al-rich, another signature of deep mixing, but signatures of the ON cycle are not clearly seen in these stars. Conclusions. Extra mixing processes clearly occur in luminous RGB stars. They cannot be explained by standard convection, nor in a simple way by rotating models. The Na- and Al-rich giants could be AGB stars themselves, but an inhomogeneous early ISM or pollution from a binary companion remain possible alternatives.
  •  
25.
  • Spite, M, et al. (author)
  • First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements
  • 2005
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 430:2, s. 655-668
  • Journal article (peer-reviewed)abstract
    • We have investigated the poorly-understood origin of nitrogen in the early Galaxy by determining N abundances from the NH band at 336 nm in 35 extremely metal-poor halo giants, with carbon and oxygen abundances from Cayrel et al. (2004, A&A, 416, 1117), using high-quality ESO VLT/UVES spectra (30 of our 35 stars are in the range -4.1 <[Fe/H] < -2.7 and 22 stars have [Fe/H] < -3.0). N abundances derived both from the NH band and from the CN band at 389 nm for 10 stars correlate well, but show a systematic difference of 0.4 dex, which we attribute to uncertainties in the physical parameters of the NH band (line positions, gf values, dissociation energy, etc.). Because any dredge-up of CNO processed material to the surface may complicate the interpretation of CNO abundances in giants, we have also measured the surface abundance of lithium in our stars as a diagnostic of such mixing. Our sample shows a clear dichotomy between two groups of stars. The first group shows evidence of C to N conversion through CN cycling and strong Li dilution, a signature of mixing; these stars are generally more evolved and located on the upper Red Giant Branch (RGB) or Horizontal Branch (HB). The second group has [N/Fe] < 0.5, shows no evidence for C to N conversion, and Li is only moderately diluted; these stars belong to the lower RGB and we conclude that their C and N abundances are very close to those of the gas from which they formed in the early Galaxy, they are called "unmixed stars". The [O/Fe] and [(C+N)/Fe] ratios are the same in the two groups, confirming that the differences between them are caused by dredge-up of CN-processed material in the first group, with negligible contributions from the O-N cycle. The "unmixed" stars reflect the abundances in the early Galaxy: the [C/Fe] ratio is constant (about + 0.2 dex) and the [C/Mg] ratio is close to solar at low metallicity, favouring a high C production by massive zero-metal supernovae. The [N/Fe] and [N/Mg] ratios scatter widely. Their mean values in each metallicity bin decrease with increasing metallicity, but this trend could be a statistical effect. The larger values of these ratios define a flat upper plateau ([N/Mg] = 0.0, [N/Fe] = + 0.1), which could reflect higher values within a wide range of yields of zero-metal SNe II. Alternatively, by analogy with the DLAs, the lower abundances ([N/Mg] = -1.1, [N/Fe] = -0.7) could reflect generally low yields from the first SNe II, the other stars being N enhanced by winds of massive Asymptotic Giant Branch (AGB) stars. Since all the stars show clear [alpha/Fe] enhancements, they were formed before any significant enrichment of the Galactic gas by SNe Ia, and their composition should reflect the yields of the first SNe II. However, if massive AGB stars or AGB supernovae evolved more rapidly than SNe Ia and contaminated the ISM, our stars would also reflect the yields of these AGB stars. At present it cannot be decided whether primary N is produced primarily in SNe II or in massive AGB stars, or in both. The stellar N abundances and [N/O] ratios are compatible with those found in Damped Lyman-alpha (DLA) systems. They extend the well-known DLA "plateau" at [N/O] approximate to -0.8 to lower metallicities, albeit with more scatter; no star is found below the putative "low [N/alpha] plateau" at [N/O] approximate to -1.55 in DLAs.
  •  
26.
  • Bonifacio, P., et al. (author)
  • Using CO5BOLD models to predict the effects of granulation on colours .
  • 2017
  • In: MEMORIE della Società Astronomica Italiana. - 0037-8720 .- 1824-016X. ; 88
  • Journal article (other academic/artistic)abstract
    • Abstract.In order to investigate the effects of granulation on fluxes and colours, we computedthe emerging fluxes from the models in theCO5BOLDgrid with metallicities [M/H]=0.0,–1.0,–2.0 and –3.0. These fluxes have been used to compute colours in different photometric systems.We explain here how our computations have been performed and provide some results.Key words.Convection – Hydrodynamics - Stars: atmosphere
  •  
27.
  • Bonifacio, P., et al. (author)
  • Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours : I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS, Gaia, and SDSS systems
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611:9
  • Journal article (peer-reviewed)abstract
    • Context. The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection. The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities.Aim. We aim to study, in a quantitative way, the impact of granulation on colours.Methods. We use the CIFIST (Cosmological Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2, 3) hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS, Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model computed for the same atmospheric parameters, which we used to define a “3D correction” that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. As an example, we illustrate these corrections applied to colours computed from ATLAS models.Results. The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01 mag, especially for colours involving blue and UV bands. We have investigated the Gaia and HIPPARCOS photometric systems and found that the (G − Hp), (BP − RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic.Conclusions. Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as diagnostics of the stellar parameters of F, G, K stars. A limitation is that scattering is treated as true absorption in our current computations, thus our 3D corrections are likely an upper limit to the true effect. We are already computing the next generation of the CIFIST grid, using an approximate treatment of scattering.
  •  
28.
  • Caffau, E., et al. (author)
  • The photospheric solar oxygen project - I. Abundance analysis of atomic lines and influence of atmospheric models
  • 2008
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 488:3, s. 1031-1046
  • Journal article (peer-reviewed)abstract
    • Context. The solar oxygen abundance has undergone a major downward revision in the past decade, the most noticeable one being the update including 3D hydrodynamical simulations to model the solar photosphere. Up to now, such an analysis has only been carried out by one group using one radiation-hydrodynamics code. Aims. We investigate the photospheric oxygen abundance considering lines from atomic transitions. We also consider the relationship between the solar model used and the resulting solar oxygen abundance, to understand whether the downward abundance revision is specifically related to 3D hydrodynamical effects. Methods. We performed a new determination of the solar photospheric oxygen abundance by analysing different high-resolution high signal-to-noise ratio atlases of the solar flux and disc-centre intensity, making use of the latest generation of CO5BOLD 3D solar model atmospheres. Results. We find 8.73 <= log (N-O/N-H) + 12 <= 8.79. The lower and upper values represent extreme assumptions on the role of collisional excitation and ionisation by neutral hydrogen for the NLTE level populations of neutral oxygen. The error of our analysis is +/- (0.04 +/- 0.03) dex, the last being related to NLTE corrections, the first error to any other effect. The 3D "granulation effects" do not play a decisive role in lowering the oxygen abundance. Conclusions. Our recommended value is log (N-O/N-H) = 8.76 +/- 0.07, considering our present ignorance of the role of collisions with hydrogen atoms on the NLTE level populations of oxygen. The reasons for lower O abundances in the past are identified as (1) the lower equivalent widths adopted and (2) the choice of neglecting collisions with hydrogen atoms in the statistical equilibrium calculations for oxygen.
  •  
29.
  • Chiavassa, A., et al. (author)
  • Radiative hydrodynamics simulations of red supergiant stars IV. Gray versus non-gray opacities
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A22-
  • Journal article (peer-reviewed)abstract
    • Context. Red supergiants are massive evolved stars that contribute extensively to the chemical enrichment of our Galaxy. It has been shown that convection in those stars produces large granules that cause surface inhomogeneities and shock waves in the photosphere. The understanding of their dynamics is crucial for unveiling the unknown mass-loss mechanism, their chemical composition, and their stellar parameters.Aims. We present a new generation of red supergiant simulations with a more sophisticated opacity treatment performed with 3D radiative-hydrodynamics code CO5BOLD.Methods. In the code the coupled equations of compressible hydrodynamics and non-local radiation transport are solved in the presence of a spherical potential. The stellar core is replaced by a special spherical inner boundary condition, where the gravitational potential is smoothed and the energy production by fusion is mimicked by a simply producing heat corresponding to the stellar luminosity. All outer boundaries are transmitting for matter and light. The post-processing radiative transfer code OPTIM3D is used to extract spectroscopic and interferometric observables.Results. We show that if one relaxes the assumption of frequency-independent opacities, this leads to a steeper mean thermal gradient in the optical thin region that strongly affects the atomic strengths and the spectral energy distribution. Moreover, the weaker temperature fluctuations reduce the incertitude on the radius determination with interferometry. We show that 1D models of red supergiants must include a turbulent velocity that is calibrated on 3D simulations to obtain the effective surface gravity that mimics the effect of turbulent pressure on the stellar atmosphere. We provide an empirical calibration of the ad hoc micro- and macroturbulence parameters for 1D models using the 3D simulations: we find that there is no clear distinction between the different macroturbulent profiles needed in 1D models to fit 3D synthetic lines.
  •  
30.
  • Cruzalebes, P., et al. (author)
  • Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER(star)
  • 2013
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 434:1, s. 437-450
  • Journal article (peer-reviewed)abstract
    • Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. 16 red giants and supergiants have been observed with the VLTI/AMBER facility over a 2-year period, at medium spectral resolution (R = 1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4 per cent using visibility data. For the eight targets previously measured by long-baseline interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5 per cent, except for TX Psc, which shows a difference of 11 per cent. For the eight other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating asymptotic giant branch, as it is predicted by the stellar evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the period-luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.
  •  
31.
  •  
32.
  •  
33.
  • Gallagher, A. J., et al. (author)
  • Observational constraints on the origin of the elements II. 3D non-LTE formation of BaII lines in the solar atmosphere
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Journal article (peer-reviewed)abstract
    • Context. The pursuit of more realistic spectroscopic modelling and consistent abundances has led us to begin a new series of papers designed to improve current solar and stellar abundances of various atomic species. To achieve this, we have begun updating the three-dimensional (3D) non-local thermodynamic equilibrium (non-LTE) radiative transfer code, MULTI3D, and the equivalent one-dimensional (1D) non-LTE radiative transfer code, MULTI 2.3.Aims. We examine our improvements to these codes by redetermining the solar barium abundance. Barium was chosen for this test as it is an important diagnostic element of the s-process in the context of galactic chemical evolution. New BaII + H collisional data for excitation and charge exchange reactions computed from first principles had recently become available and were included in the model atom. The atom also includes the effects of isotopic line shifts and hyperfine splitting.Methods. A grid of 1D LTE barium lines were constructed with MULTI 2.3 and fit to the four BaII lines available to us in the optical region of the solar spectrum. Abundance corrections were then determined in 1D non-LTE, 3D LTE, and 3D non-LTE. A new 3D non-LTE solar barium abundance was computed from these corrections.Results. We present for the first time the full 3D non-LTE barium abundance of A(Ba) = 2.27 +/- 0.02 +/- 0.01, which was derived from four individual fully consistent barium lines. Errors here represent the systematic and random errors, respectively.
  •  
34.
  • Gustafsson, Bengt, et al. (author)
  • A grid of MARCS model atmospheres for late-type stars
  • 2008
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 486:3, s. 951-970
  • Research review (peer-reviewed)abstract
    • Context. In analyses of stellar spectra and colours, and for the analysis of integrated light from galaxies, a homogeneous grid of model atmospheres of late-type stars and corresponding flux spectra is needed. Aims. We construct an extensive grid of spherically-symmetric models (supplemented with plane-parallel ones for the highest surface gravities), built on up-to-date atomic and molecular data, and make it available for public use. Methods. The most recent version of the MARCS program is used. Results. We present a grid of about 104 model atmospheres for stars with 2500K <= T-eff <= 8000 K, -1 <= log g = log (GM/R-2) <= 5 (cgs) with various masses and radii, -5 <= [Me/H] <= + 1, with [alpha/Fe] = 0.0 and 0.4 and different choices of C and N abundances. This includes "CN-cycled" models with C/N=4.07 (solar), 1.5 and 0.5, C/O ranging from 0.09 to (normally) 5.0 to also represent stars of spectral types R, S and N, and with 1.0 <= xi(t) = 5km s(-1). We also list thermodynamic quantities (T, P-g, P-e, rho, partial pressures of molecules, etc.) and provide them on the World Wide Web, as well as calculated fluxes in approximately 108 000 wavelength points. Underlying assumptions in addition to 1D stratification (spherical or plane-parallel) include hydrostatic equilibrium, mixing-length convection and local thermodynamic equilibrium. We discuss a number of general properties of the models, in particular in relation to the effects of changing abundances, of blanketing, and of sphericity. We illustrate positive and negative feedbacks between sphericity and molecular blanketing. We compare the models with those of other available grids and find excellent agreement with planeparallel models of Castelli & Kurucz (if convection is treated consistently) within the overlapping parameter range. Although there are considerable departures from the spherically-symmetric NextGen models, the agreement with more recent PHOENIX models is gratifying. Conclusions. The models of the grid show considerable regularities, but some interesting departures from general patterns occur for the coolest models due to the molecular opacities. We have tested a number of approximate "rules of thumb" concerning effects of blanketing and sphericity and often found them to be astonishingly accurate. Some interesting new phenomena have been discovered and explored, such as the intricate coupling between blanketing and sphericity, and the strong effects of carbon enhancement on metal-poor models. We give further details of line absorption data for molecules, as well as details of models and comparisons with observations in subsequent papers.
  •  
35.
  • Kravchenko, K., et al. (author)
  • Atmosphere of Betelgeuse before and during the Great Dimming event revealed by tomography
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Journal article (peer-reviewed)abstract
    • Context. Despite being the best studied red supergiant star in our Galaxy, the physics behind the photometric variability and mass loss of Betelgeuse is poorly understood. Moreover, recently the star has experienced an unusual fading with its visual magnitude reaching a historical minimum. The nature of this event was investigated by several studies where mechanisms, such as episodic mass loss and the presence of dark spots in the photosphere, were invoked.Aims. We aim to relate the atmospheric dynamics of Betelgeuse to its photometric variability, with the main focus on the dimming event.Methods. We used the tomographic method which allowed us to probe different depths in the stellar atmosphere and to recover the corresponding disk-averaged velocity field. The method was applied to a series of high-resolution HERMES observations of Betelgeuse. Variations in the velocity field were then compared with photometric and spectroscopic variations.Results. The tomographic method reveals that the succession of two shocks along our line-of-sight (in February 2018 and January 2019), the second one amplifying the effect of the first one, combined with underlying convection and/or outward motion present at this phase of the 400 d pulsation cycle, produced a rapid expansion of a portion of the atmosphere of Betelgeuse and an outflow between October 2019 and February 2020. This resulted in a sudden increase in molecular opacity in the cooler upper atmosphere of Betelgeuse and, thus, in the observed unusual decrease of the star's brightness.
  •  
36.
  • Kravchenko, K., et al. (author)
  • Tomography of cool giant and supergiant star atmospheres : I. Validation of the method
  • 2018
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 610
  • Journal article (peer-reviewed)abstract
    • Context. Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus contain information on the dynamics of stellar atmospheres. Aims. The tomographic method allows to recover the distribution of the component of the velocity field projected on the line of sight at different optical depths in the stellar atmosphere. The computation of the contribution function to the line depression aims at correctly identifying the depth of formation of spectral lines in order to construct numerical masks probing spectral lines forming at different optical depths. Methods. The tomographic method is applied to one-dimensional (1D) model atmospheres and to a realistic three-dimensional (3D) radiative hydrodynamics simulation performed with CO5BOLD in order to compare their spectral line formation depths and velocity fields. Results. In 1D model atmospheres, each spectral line forms in a restricted range of optical depths. On the other hand, in 3D simulations, the line formation depths are spread in the atmosphere mainly because of temperature and density inhomogeneities. Comparison of cross-correlation function profiles obtained from 3D synthetic spectra with velocities from the 3D simulation shows that the tomographic method correctly recovers the distribution of the velocity component projected on the line of sight in the atmosphere.
  •  
37.
  • Kravchenko, K., et al. (author)
  • Tomography of cool giant and supergiant star atmospheres II : Signature of convection in the atmosphere of the red supergiant star mu Cep
  • 2019
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 632
  • Journal article (peer-reviewed)abstract
    • Context: Red supergiants are cool massive stars and are the largest and the most luminous stars in the Universe. They are characterized by irregular or semi-regular photometric variations, the physics of which is not clearly understood.Aims: The paper aims to derive the velocity field in the red supergiant star mu Cep and to relate it to the photometric variability with the help of the tomographic method.Methods: The tomographic method allows one to recover the line-of-sight velocity distribution over the stellar disk and within different optical-depth slices. This method was applied to a series of high-resolution spectra of mu Cep, and these results are compared to those obtained from 3D radiative-hydrodynamics CO5BOLD simulations of red supergiants. Fluctuations in the velocity field are compared with photometric and spectroscopic variations, the latter were derived from the TiO band strength and serve, at least partly, as a proxy of the variations in effective temperature.Results: The tomographic method reveals a phase shift between the velocity and spectroscopic and photometric variations. This phase shift results in a hysteresis loop in the temperature - velocity plane with a timescale of a few hundred days, which is similar to the photometric one. The similarity between the hysteresis loop timescale measured in mu Cep and the timescale of acoustic waves disturbing the convective pattern suggests that such waves play an important role in triggering the hysteresis loops.
  •  
38.
  • Masseron, T., et al. (author)
  • Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code
  • 2019
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Aims: We seek to provide abundances of a large set of light and neutron-capture elements homogeneously analyzed that cover a wide range of metallicity to constrain globular cluster (GC) formation and evolution models.Methods: We analyzed a large sample of 885 GCs giants from the SDSS IV-Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We used the Cannon results to separate the red giant branch and asymptotic giant branch stars, not only allowing for a refinement of surface gravity from isochrones, but also providing an independent H-band spectroscopic method to distinguish stellar evolutionary status in clusters. We then used the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) to derive metallicity, microturbulence, macroturbulence, many light-element abundances, and the neutron-capture elements Nd and Ce for the first time from the APOGEE GCs data.Results: Our independent analysis helped us to diagnose issues regarding the standard analysis of the APOGEE DR14 for low-metallicity GC stars. Furthermore, while we confirm most of the known correlations and anticorrelation trends (Na-O, Mg-Al, C-N), we discover that some stars within our most metal-poor clusters show an extreme Mg depletion and some Si enhancement. At the same time, these stars show some relative Al depletion, displaying a turnover in the Mg-Al diagram. These stars suggest that Al has been partially depleted in their progenitors by very hot proton-capture nucleosynthetic processes. Furthermore, we attempted to quantitatively correlate the spread of Al abundances with the global properties of GCs. We find an anticorrelation of the Al spread against clusters metallicity and luminosity, but the data do not allow us to find clear evidence of a dependence of N against metallicity in the more metal-poor clusters.Conclusions: Large and homogeneously analyzed samples from ongoing spectroscopic surveys unveil unseen chemical details for many clusters, including a turnover in the Mg-Al anticorrelation, thus yielding new constrains for GCs formation/evolution models.
  •  
39.
  • Meszaros, Sz., et al. (author)
  • New ATLAS9 and MARCS Model Atmosphere Grids for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)
  • 2012
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 144:4, s. 120-
  • Journal article (peer-reviewed)abstract
    • We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H2O line list, a wide range of carbon ([C/M]) and alpha element [alpha/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and alpha-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.
  •  
40.
  • Quinet, P, et al. (author)
  • Transition probabilities and lifetimes in neutral and singly ionized osmium and the Solar osmium abundance
  • 2006
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 448:3, s. 93-1207
  • Journal article (peer-reviewed)abstract
    • Radiative lifetime measurements have been performed, with a time-resolved laser-induced fluorescence technique, for 12 levels of Os I and for 9 levels of Os II. For 9 levels of Os I and 4 levels of Os II, there were no previous experimental data available. From a comparison with new theoretical calculations, taking configuration interactions and core-polarization effects into account, it has been possible to deduce oscillator strengths for 129 transitions of Os I and 137 transitions of Os II of astrophysical interest appearing in the wavelength range 180.0-870.0 nm. These results have allowed us to revise the abundance of osmium in the solar photosphere (log epsilon(Os) = 1.25 +/- 0.11). The newly derived oscillator strengths have been applied as well to derive the osmium abundance in the carbon-rich metal-poor star HD 187861.
  •  
41.
  • Sordo, Rosanna, et al. (author)
  • Stellar libraries for Gaia
  • 2011
  • In: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 328:Conference 1, s. 012006-
  • Journal article (peer-reviewed)abstract
    • Gaia will observe up to a billion stellar sources. Automated algorithms are under development to derive the atmospheric parameters of all observed spectra, from low resolution optical spectra alone or in synergy with high resolution spectra in the near-IR Ca II triplet region. To do so, a large database of state-of-the-art stellar libraries has been produced for the Gaia community, computed using different codes optimized for specific purposes. The choice to use different spectral codes in different regions of the H-R diagram raises the problem of the coherence of the different spectra, specifically in the transition zones. We present a comparison between the libraries from the point of view of spectra simulations for training the Gaia algorithms. We also present the implementation of these libraries into a Simple Stellar Population code.
  •  
42.
  • Vallenari, A., et al. (author)
  • Synthetic stellar libraries and SSP simulations in the Gaia Era
  • 2009
  • In: Proceedings of the International Astronomical Union. ; , s. 444-445
  • Conference paper (peer-reviewed)abstract
    • The Gaia mission will obtain accurate positions, parallaxes and proper motions for 109 object all over the sky. In addition, it will collect low resolution spectroscopy in the optical range for ∼ 109 objects, stars, galaxies, and QSOs. Parameters of those objects are expected to be part of the final Catalog. Complete and up-to-date libraries of synthetic stellar spectra are needed to train the algorithms to classify this huge amount of data. Here we focus on the use of the synthetic libraries of spectra calculated by the Gaia community to derive grids of Single Stellar Populations as building blocks of population synthesis models. © International Astronomical Union 2010.
  •  
43.
  • van Eck, S., et al. (author)
  • A Grid of MARCS Model Atmospheres for S Stars
  • 2011
  • In: Why Galaxies Care about AGB Stars II.
  • Conference paper (peer-reviewed)abstract
    • S-type stars are late-type giants whose atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. A large grid of S-star model atmospheres has been computed covering the range 2700 \le T$_eff$(K) \le 4000 with 0.5 \le C/O \le 0.99. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle T$_eff$, C/O and [s/Fe]. A \ldquobest-model finding tool\rdquo has been developed using a set of well-chosen indices and checked against photometry as well as low- and high-resolution spectroscopy. It is found that applying M-star model atmospheres (i.e., with a solar C/O ratio) to S stars can lead to errors in T$_eff$ up to 400 K. We constrain the parameter space occupied by the S stars of the vast Henize sample in terms of T$_eff$, [C/O] and [s/Fe].
  •  
44.
  • Van Eck, S., et al. (author)
  • A grid of S stars MARCS model atmospheres
  • 2011
  • In: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 328, s. 012009-
  • Journal article (peer-reviewed)abstract
    • S stars are cool stars of temperatures similar to those of M giants, but their atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. Despite numerous attempts to link phenomenological spectral classification criteria to physical parameters (T$_eff$, gravity, C/O, [s/Fe], [Fe/H]), the parameter space of S stars is poorly known and this has prevented accurate abundance analysis of S stars until now. Here we present a large grid of S-star model atmospheres. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle the effective temperature, C/O and [s/Fe]. The stellar parameters derived on the basis of low-resolution spectra and photometry are shown to be fairly accurate when compared to high-resolution data of the same stars. The C/O ratio of S stars is found to be between the solar value (0.5) and 0.99, and not 1 as often claimed in the literature. Consistently with stellar evolution expectations, the C/O ratio increases as the effective temperature decreases.
  •  
45.
  •  
46.
  • Zamora, O., et al. (author)
  • New H-Band Stellar Spectral Libraries for the SdSS-III/Apogee Survey
  • 2015
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 149:6
  • Journal article (peer-reviewed)abstract
    • The Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high-resolution (R similar to 22,500), high signal-to-noise ratio (>100) spectra in the H-band (similar to 1.5-1.7 mu m) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature (T-eff) ranging from 3500 to 8000 K for the automated chemical analysis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS-III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASS epsilon T spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASS epsilon T (T-eff = 3500-8000 K) and MARCS/Turbospectrum (T-eff = 3500-5500 K) grids cover a wide range of metallicity (-2.5 <= [M/H] <= + 0.5 dex), surface gravity (0 <= log g <= 5 dex), microturbulence (0.5 <= xi <= 8 km s(-1)), carbon (-1 <= [C/M] <= + 1 dex), nitrogen (-1 <= [N/M] <= + 1 dex), and alpha-element (-1 <= [alpha/M] <= + 1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASS.T and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-46 of 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view