SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pollock I) "

Search: WFRF:(Pollock I)

  • Result 1-40 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Chen, L. -J, et al. (author)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Journal article (peer-reviewed)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
11.
  • Oka, M., et al. (author)
  • Electron Scattering by High-frequency Whistler Waves at Earth's Bow Shock
  • 2017
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 842:2
  • Journal article (peer-reviewed)abstract
    • Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of nonthermal electrons by whistler waves at Earth's bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number similar to 11 and a shock angle similar to 84 degrees. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 Omega(ce), where Omega(ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
  •  
12.
  • Breuillard, H., et al. (author)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Journal article (peer-reviewed)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
13.
  • Lavraud, B., et al. (author)
  • Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
  • 2016
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:7, s. 3042-3050
  • Journal article (peer-reviewed)abstract
    • Based on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
  •  
14.
  • Le Contel, O., et al. (author)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Journal article (peer-reviewed)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
15.
  •  
16.
  • Torbert, R. B., et al. (author)
  • Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
  • 2018
  • In: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 362:6421, s. 1391-1395
  • Journal article (peer-reviewed)abstract
    • Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.
  •  
17.
  •  
18.
  •  
19.
  • Alshaigy, B., et al. (author)
  • Are We There Yet? : Incorporating Climate Change into CSEd
  • 2022
  • In: Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE. - New York, NY, USA : Association for Computing Machinery. ; , s. 664-665
  • Conference paper (peer-reviewed)abstract
    • Climate change is the "biggest threat modern humans have ever faced". The implications of the crisis are imminent and grave. As part of COP26, leaders from all over the world agreed to the Glasgow Climate Pact with the goal of limiting the increased rise of global temperature by 1.5 degrees. With less than 8 years left until the 2030 UN deadline in which the climate effects become irreversible, how do we prepare learners for what might be an inevitable reality? How do we equip computing students with crucial technical, ethical, and leadership skills to mitigate its effect? More importantly, how do people in positions of power, departmental and institutional, be involved? In 2019, we formed an internal working group as part of ITiCSE conference to examine how computing institutions, departments, and faculty members dealt with, if at all, the climate emergency within CS education. Our efforts included conducting a literature review, interviewing CSEd climate experts, leading a world cafe session, and collating and publishing resources from various sources for the benefit of educators interested in incorporating climate change in the curriculum. And yet, there are still struggles reported with adopting these solutions, particularly in light of the global pandemic. This panel will serve as a public forum to express institutional, departmental, and individual challenges associated with tackling the climate crisis and share successful strategies, ideas, and experiences to support the CS community. The discussions will centre over five themes previously identified in the world cafe. 
  •  
20.
  • Argall, M. R., et al. (author)
  • Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 146-162
  • Journal article (peer-reviewed)abstract
    • We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
  •  
21.
  • Breuillard, H., et al. (author)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Journal article (peer-reviewed)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
22.
  • Burch, J. L., et al. (author)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • In: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Research review (peer-reviewed)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
23.
  • Böhm, M., et al. (author)
  • The conservation status of the world’s freshwater molluscs
  • 2021
  • In: Hydrobiologia. - : Springer Science and Business Media LLC. - 0018-8158 .- 1573-5117. ; 848, s. 3231-3254
  • Journal article (peer-reviewed)abstract
    • With the biodiversity crisis continuing unchecked, we need to establish levels and drivers of extinction risk, and reassessments over time, to effectively allocate conservation resources and track progress towards global conservation targets. Given that threat appears particularly high in freshwaters, we assessed the extinction risk of 1428 randomly selected freshwater molluscs using the IUCN Red List Categories and Criteria, as part of the Sampled Red List Index project. We show that close to one-third of species in our sample are estimated to be threatened with extinction, with highest levels of threat in the Nearctic, Palearctic and Australasia and among gastropods. Threat levels were higher in lotic than lentic systems. Pollution (chemical and physical) and the modification of natural systems (e.g. through damming and water abstraction) were the most frequently reported threats to freshwater molluscs, with some regional variation. Given that we found little spatial congruence between species richness patterns of freshwater molluscs and other freshwater taxa, apart from crayfish, new additional conservation priority areas emerged from our study. We discuss the implications of our findings for freshwater mollusc conservation, the adequacy of a sampled approach and important next steps to estimate trends in freshwater mollusc extinction risk over time. © 2020, Springer Nature Switzerland AG.
  •  
24.
  • Carr, C., et al. (author)
  • RPC : The rosetta plasma consortium
  • 2007
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 629-647
  • Research review (peer-reviewed)abstract
    • The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma enviromnent of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes Optimum use of the available mass and power resources.
  •  
25.
  • Chasapis, A., et al. (author)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Journal article (peer-reviewed)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
26.
  • Fadanelli, S., et al. (author)
  • Four-Spacecraft Measurements of the Shape and Dimensionality of Magnetic Structures in the Near-Earth Plasma Environment
  • 2019
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:8, s. 6850-6868
  • Journal article (peer-reviewed)abstract
    • We present a new method for determining the main relevant features of the local magnetic field configuration, based entirely on the knowledge of the magnetic field gradient four‐spacecraft measurements. The method, named “magnetic configuration analysis” (MCA), estimates the spatial scales on which the magnetic field varies locally. While it directly derives from the well‐known magnetic directional derivative and magnetic rotational analysis procedures (Shi et al., 2005, htpps://doi.org/10.1029/2005GL022454; Shen et al., 2007, https://doi.org/10.1029/2005JA011584), MCA was specifically designed to address the actual magnetic field geometry. By applying MCA to multispacecraft data from the Magnetospheric Multiscale (MMS) satellites, we perform both case and statistical analyses of local magnetic field shape and dimensionality at very high cadence and small scales. We apply this technique to different near‐Earth environments and define a classification scheme for the type of configuration observed. While our case studies allow us to benchmark the method with those used in past works, our statistical analysis unveils the typical shape of magnetic configurations and their statistical distributions. We show that small‐scale magnetic configurations are generally elongated, displaying forms of cigar and blade shapes, but occasionally being planar in shape like thin pancakes (mostly inside current sheets). Magnetic configurations, however, rarely show isotropy in their magnetic variance. The planar nature of magnetic configurations and, most importantly, their scale lengths strongly depend on the plasma β parameter. Finally, the most invariant direction is statistically aligned with the electric current, reminiscent of the importance of electromagnetic forces in shaping the local magnetic configuration.
  •  
27.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
28.
  • Farrugia, C. J., et al. (author)
  • Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitube Alfvenic Fluctuations Terminating in a Field and Flow Discontinuity
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:11, s. 8983-9004
  • Journal article (peer-reviewed)abstract
    • In this paper we report on a sequence of large-amplitude Alfvenic fluctuations terminating in a field and flow discontinuity and their effects on electromagnetic fields and plasmas in the near-magnetopause magnetosheath. An arc-polarized structure in the magnetic field was observed by the Time History of Events and Macroscale Interactions during Substorms-C in the solar wind, indicative of nonlinear Alfven waves. It ends with a combined tangential discontinuity/vortex sheet, which is strongly inclined to the ecliptic plane and at which there is a sharp rise in the density and a drop in temperature. Several effects resulting from this structure were observed by the Magnetospheric Multiscale spacecraft in the magnetosheath close to the subsolar point (11:30 magnetic local time) and somewhat south of the geomagnetic equator (-33 degrees magnetic latitude): (i) kinetic Alfven waves; (ii) a peaking of the electric and magnetic field strengths where E . J becomes strong and negative (-1 nW/m(3)) just prior to an abrupt dropout of the fields; (iii) evolution in the pitch angle distribution of energetic (a few tens of kilo-electron-volts) ions (H+, Hen+, and On+) and electrons inside a high-density region, which we attribute to gyrosounding of the tangential discontinuity/vortex sheet structure passing by the spacecraft; (iv) field-aligned acceleration of ions and electrons that could be associated with localized magnetosheath reconnection inside the high-density region; and (v) variable and strong flow changes, which we argue to be unrelated to reconnection at partial magnetopause crossings and likely result from deflections of magnetosheath flow by a locally deformed, oscillating magnetopause.
  •  
29.
  • Farrugia, C. J., et al. (author)
  • Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvenic flow
  • 2016
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 6070-6077
  • Journal article (peer-reviewed)abstract
    • We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The similar to 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvenic flow. The field line twist is illustrated by the behavior of flows parallel/perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
  •  
30.
  • Farrugia, C. J., et al. (author)
  • MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:10, s. 9934-9951
  • Journal article (peer-reviewed)abstract
    • We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (∼20 nT) pointing south and (ii) a density profile with episodic decreases to values of ∼0.3 cm−3 followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of ∼2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Te⊥>Te∥) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation.
  •  
31.
  • Horimoto, Yoshiya, et al. (author)
  • ERβ1 represses FOXM1 expression through targeting ERα to control cell proliferation in breast cancer.
  • 2011
  • In: The American journal of pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 179:3, s. 1148-56
  • Journal article (peer-reviewed)abstract
    • In this study, we investigated the effects of ectopic estrogen receptor (ER)β1 expression in breast cancer cell lines and nude mice xenografts and observed that ERβ1 expression suppresses tumor growth and represses FOXM1 mRNA and protein expression in ERα-positive but not ERα-negative breast cancer cells. Furthermore, a significant inverse correlation exists between ERβ1 and FOXM1 expression at both protein and mRNA transcript levels in ERα-positive breast cancer patient samples. Ectopic ERβ1 expression resulted in decreased FOXM1 protein and mRNA expression only in ERα-positive but not ERα-negative breast carcinoma cell lines, suggesting that ERβ1 represses ERα-dependent FOXM1 transcription. Reporter gene assays showed that ERβ1 represses FOXM1 transcription through an estrogen-response element located within the proximal promoter region that is also targeted by ERα. The direct binding of ERβ1 to the FOXM1 promoter was confirmed by chromatin immunoprecipitation analysis, which also showed that ectopic expression of ERβ1 displaces ERα from the endogenous FOXM1 promoter. Forced expression of ERβ1 promoted growth suppression in MCF-7 cells, but the anti-proliferative effects of ERβ1 could be overridden by overexpression of FOXM1, indicating that FOXM1 is an important downstream target of ERβ1 signaling. Together, these findings define a key anti-proliferative role for ERβ1 in breast cancer development through negatively regulating FOXM1 expression.
  •  
32.
  • Hwang, K. -J, et al. (author)
  • Sequential Observations of Flux Transfer Events, Poleward-Moving Auroral Forms, and Polar Cap Patches
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 125:6
  • Journal article (peer-reviewed)abstract
    • We report the observation of solar wind-magnetosphere-ionosphere interactions using a series of flux transfer events (FTEs) observed by Magnetospheric MultiScale (MMS) mission located near the dayside magnetopause on 18 December 2017. The FTEs were observed to propagate duskward and either southward or slightly northward, as predicted under duskward and southward interplanetary magnetic field (IMF). The Cooling model also predicted a significant dawnward propagation of northward-moving FTEs. Near the MMS footprint, a series of poleward-moving auroral forms (PMAFs) occurred almost simultaneously with those FTEs. They propagated poleward and westward, consistent with the modeled FTE propagation. The intervals between FTEs, relatively consistent with those between PMAFs, strongly suggest a one-to-one correspondence between the dayside transients and ionospheric responses. The FTEs embedded in continuous reconnection observed by MMS and corresponding PMAFs individually occurred during persistent auroral activity recorded by an all-sky imager strongly indicate that those FTEs/PMAFs resulted from the temporal modulation of the reconnection rate during continuous reconnection. With the decay of the PMAFs associated with the FTEs, patch-like plasma density enhancements were detected to form and propagate poleward and then dawnward. Propagation to the dawn was also suggested by the Super Dual Auroral Radar Network (SuperDARN) convection and Global Positioning System (GPS) total electron content data. We relate the temporal variation of the driving solar-wind and magnetospheric mechanism to that of the high-latitude and polar ionospheric responses and estimate the response time.
  •  
33.
  • Johlander, Andreas, et al. (author)
  • Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft
  • 2016
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 117:16
  • Journal article (peer-reviewed)abstract
    • Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.
  •  
34.
  • Le Contel, O., et al. (author)
  • Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5943-5952
  • Journal article (peer-reviewed)abstract
    • We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave emission propagating toward the reconnection region with quasi-parallel and oblique wave angles is detected just before the opening of the magnetic field lines and the detection of escaping energetic electrons. Its source is likely the perpendicular temperature anisotropy of magnetospheric energetic electrons. In this region, perpendicular and parallel currents as well as the Hall electric field are calculated and found to be consistent with the decoupling of ions from the magnetic field and the crossing of a magnetospheric separatrix region. On the magnetosheath side, Hall electric fields are found smaller as the density is larger but still consistent with the decoupling of ions. Intense quasi-parallel whistler wave emissions are detected propagating both toward and away from the reconnection region in association with a perpendicular anisotropy of the high-energy part of the magnetosheath electron population and a strong perpendicular current, which suggests that in addition to the electron diffusion region, magnetosheath separatrices could be a source region for whistler waves.
  •  
35.
  • Liberles, David A., et al. (author)
  • The interface of protein structure, protein biophysics, and molecular evolution
  • 2012
  • In: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 21:6, s. 769-785
  • Research review (peer-reviewed)abstract
    • The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.
  •  
36.
  • Nakamura, R., et al. (author)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Journal article (peer-reviewed)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
37.
  • Oieroset, M., et al. (author)
  • Reconnection With Magnetic Flux Pileup at the Interface of Converging ts at the Magnetopause
  • 2019
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:4, s. 1937-1946
  • Journal article (peer-reviewed)abstract
    • We report Magnetospheric Multiscale observations of reconnection in a in current sheet at the interface of interlinked flux tubes carried by nverging reconnection jets at Earth's magnetopause. The ion skin pth-scale width of the interface current sheet and the non-frozen-in ns indicate that Magnetospheric Multiscale crossed the reconnection yer near the X-line, through the ion diffusion region. Significant leup of the reconnecting component of the magnetic field in this and ree other events on approach to the interface current sheet was companied by an increase in magnetic shear and decrease in , leading conditions favorable for reconnection at the interface current sheet. e pileup also led to enhanced available magnetic energy per particle d strong electron heating. The observations shed light on the olution and energy release in 3-D systems with multiple reconnection tes. ain Language Summary The Earth and the solar wind magnetic fields terconnect through a process called magnetic reconnection. The newly connected magnetic field lines are strongly bent and accelerate rticles, similar to a rubber band in a slingshot. In this paper we ve used observations from NASA's Magnetospheric MultiScale spacecraft investigate what happens when two of these slingshot-like magnetic eld lines move toward each other and get tangled up. We found that the o bent magnetic field lines tend to orient themselves perpendicular to ch other as they become interlinked and stretched, similar to what bber bands would do. This reorientation allows the interlinked gnetic fields to reconnect again, releasing part of the built-up gnetic energy as strong electron heating. The results are important cause they show how interlinked magnetic fields, which occur in many lar and astrophysics contexts, reconnect and produce enhanced electron ating, something that was not understood before.
  •  
38.
  •  
39.
  • Vernisse, Y., et al. (author)
  • Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability
  • 2016
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:10, s. 9926-9939
  • Journal article (peer-reviewed)abstract
    • The Magnetospheric Multiscale mission has demonstrated the frequent presence of reconnection exhausts at thin current sheets within Kelvin-Helmholtz (KH) waves at the flank magnetopause. Motivated by these recent observations, we performed a statistical analysis of the boundary layers on the magnetosheath side of all KH current sheets on 8 September 2015. We show 86% consistency between the exhaust flows and particle leakage in the magnetosheath boundary layers but further highlight the very frequent presence of additional boundary layer signatures that do not come from the locally observed reconnection exhausts. These additional electron and ion boundary layers, of various durations and at various positions with respect to the leading and trailing boundaries of the KH waves, signal connections to reconnection sites at other locations. Based on the directionality and extent of these layers, we provide an interpretation whereby complex magnetic topologies can arise within KH waves from the combination of reconnection in the equatorial plane and at midlatitudes in the Southern and Northern Hemispheres, where additional reconnection sites are expected to be triggered by the three-dimensional field lines interweaving induced by the KH waves at the flanks (owing to differential flow and magnetic field shear with latitude). The present event demonstrates that the three-dimensional development of KH waves can induce plasma entry (through reconnection at both midlatitude and equatorial regions) already sunward of the terminator where the instability remains in its linear stage.
  •  
40.
  • Yao, S. T., et al. (author)
  • Waves in Kinetic-Scale Magnetic Dips : MMS Observations in the Magnetosheath
  • 2019
  • In: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:2, s. 523-533
  • Journal article (peer-reviewed)abstract
    • Kinetic scale magnetic dips (KSMDs), with a significant depression in magnetic field strength, and scale length close to and less than one proton gyroradius, were reported in the turbulent plasmas both in recent observation and numerical simulation studies. These KSMDs likely play important roles in energy conversion and dissipation. In this study, we present observations of the KSMDs that are labeled whistler mode waves, electrostatic solitary waves, and electron cyclotron waves in the magnetosheath. The observations suggest that electron temperature anisotropy or beams within KSMD structures provide free energy to generate these waves. In addition, the occurrence rates of the waves are higher in the center of the magnetic dips than at their edges, implying that the KSMDs might be the origin of various kinds of waves. We suggest that the KSMDs could provide favorable conditions for the generation of waves and transfer energy to the waves in turbulent magnetosheath plasmas. Plain Language Summary The Earth's magnetosheath is a turbulent plasma environment where energy conversion, particle acceleration, and mass and momentum transport take place. Many of these key processes involve kinetic-scale physics. However, in-depth studies from previous missions are limited by their lower spacecraft data resolution. The recent Magnetospheric Multiscale (MMS) mission provides us with a large amount of high-temporal cadence data for studying kinetic-scale physics in the magnetosheath. In this study, we report whistler mode waves, electrostatic solitary waves and electron cyclotron waves within kinetic-scale magnetic dips (KSMDs) that can be generated in the turbulent magnetosheath. These waves could be excited by electron temperature anisotropy or beams. As is well known, plasma waves are important processes in converting energy, accelerating and scattering electrons and ions, and modifying the distributions of charged particles. If plasma instabilities develop within the KSMDs, the resulting waves could absorb free energy from plasma particles and may propagate out of the KSMDs. Thus, our discoveries could significantly advance the understanding of energy conversion and dissipation for kinetic-scale turbulence. This study provides a new reference not only for observations in space physics but also for related basic plasma theories and numerical simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-40 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view