SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pramanik Prativa) "

Search: WFRF:(Pramanik Prativa)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chowdhury, Mouli Roy, et al. (author)
  • Antiferromagnetic short-range order and cluster spin-glass state in diluted spinel ZnTiCoO4
  • 2022
  • In: Journal of Physics. - : IOP Publishing Ltd. - 0953-8984 .- 1361-648X. ; 34:27
  • Journal article (peer-reviewed)abstract
    • The nature of magnetism in the doubly-diluted spinel ZnTiCoO4 = (Zn2+)( A ) [Ti4+Co2+]( B )O-4 is reported here employing the temperature and magnetic field (H) dependence of dc susceptibility (chi), ac susceptibilities (chi ' and chi ''), and heat capacity (C (p)) measurements. Whereas antiferromagnetic (AFM) Neel temperature T (N) = 13.9 K is determined from the peak in the partial differential (chi T)/ partial differential T vs T plot, the fit of the relaxation time tau (determined from the peak in the chi '' vs T data at different frequencies) to the Power law: tau = tau (0) [(T - T (SG))/T (SG)](-z nu ) yields the spin glass freezing temperature T (SG) = 12.9 K, z nu similar to 11.75, and tau (0) similar to 10(-12) s. Since the magnitudes of tau (0) and z nu depend on the magnitude of T (SG), a procedure is developed to find the optimum value of T (SG) = 12.9 K. A similar procedure is used to determine the optimum T (0) = 10.9 K in the Vogel-Fulcher law: tau = tau (0) exp[E (a)/k (B)(T - T (0))] yielding E (a)/k (B) = 95 K, and tau (0) = 1.6 x 10(-13) s. It is argued that the comparatively large magnitude of the Mydosh parameter omega = 0.026 and k (B) T (0)/E (a) = 0.115 (MUCH LESS-THAN1) suggests cluster spin-glass state in ZnTiCoO4 below T-SG. In the C (p) vs T data from 1.9 K to 50 K, only a broad peak near 20 K is observed. This and absence of lambda-type anomaly near T (N) or T (SG) combined with the reduced value of change in magnetic entropy from 50 K to 1.9 K suggests only short-range AFM ordering in the system, consistent with spin-glass state. The field dependence of T (SG) shows slight departure (phi similar to 4.0) from the non-mean-field Almeida-Thouless line T (SG)(H) = T (SG)(0) (1 - AH (2/phi )). Strong temperature dependence of magnetic viscosity S and coercivity H (C) without exchange bias, both tending to zero on approach to T (SG) from below, further support the spin-glass state which results from magnetic dilution driven by diamagnetic Zn2+ and Ti4+ ions leading to magnetic frustration. Magnetic phase diagram in the H-T plane is established using the high-field magnetization data M(H, T) for T < T (N) which reveals rapid decrease of T (SG) with increase in H whereas decrease in T (N) with increase in H is weaker, typical of AFM systems. For T > T (N), the data of chi vs T are fit to the modified Curie-Weiss law, chi = chi (0) + C/(T + theta), with chi (0) = 3.2 x 10(-4) emu mol(-1) Oe(-1) yielding theta = 4 K and C = 2.70 emu K mol(-1) Oe(-1). This magnitude of C yields effective magnetic moment = 4.65 mu (B) for Co2+, characteristic of Co2+ ions with some contribution from spin-orbit coupling. Molecular field theory with effective spin S = 3/2 of Co2+ is used to determine the nearest-neighbor exchange constant J (1)/k (B) = 2. 39 K AFM and next-nearest-neighbor exchange constant J (2)/k (B) = -0.66 K (ferromagnetic).
  •  
2.
  • Eder, Felix, et al. (author)
  • The Cobalt(II) Oxidotellurate(IV) Hydroxides Co-2(TeO3)(OH)2 and Co15(TeO3)14(OH)2
  • 2023
  • In: Crystals. - : MDPI. - 2073-4352. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Previously unknown Co-2(TeO3)(OH)(2) and Co-15(TeO3)(14)(OH)(2) were obtained under mild hydrothermal reaction conditions (210 degrees C, autogenous pressure) from alkaline solutions. Their crystal structures were determined from single-crystal X-ray diffraction data. Co-2(TeO3)(OH)(2) (Z = 2, P1 over bar , a = 5.8898(5), b = 5.9508(5), c = 6.8168(5) & ANGS;, alpha = 101.539(2), beta = 100.036(2), gamma = 104.347(2)& DEG;, 2120 independent reflections, 79 parameters, R[F-2 > 2 sigma(F-2)] = 0.017) crystallizes in a unique structure comprised of undulating (2)(& PROP;)[Co-2(OH)(6/3)O3/3O2/2O1/1](4-) layers. Adjacent layers are linked by Te-IV atoms along the [001] stacking direction. Co-2(TeO3)(OH)(2) is stable up to 450 & DEG;C and decomposes under the release of water into Co6Te5O16 and CoO. Magnetic measurements of Co-2(TeO3)(OH)(2) showed antiferromagnetic ordering at & AP; 70 K. The crystal structure of Co-15(TeO3)(14)(OH)(2) (Z = 3, R3 over bar , a = 11.6453(2), c = 27.3540(5) & ANGS;, 3476 independent reflections, 112 parameters, R[F-2 > 2 sigma(F-2)] = 0.026) is isotypic with Co-15(TeO3)(14)F-2. A quantitative structural comparison revealed that the main structural difference between the two phases is connected with the replacement of F by OH, whereas the remaining part of the three-periodic network defined by [CoO6], [CoO5(OH)], [CoO5] and [TeO3] polyhedra is nearly unaffected. Consequently, the magnetic properties of the two phases are similar, namely being antiferromagnetic at low temperatures.
  •  
3.
  • Ghosh, Sayandeep, et al. (author)
  • Antiferromagnetism, spin-glass state, H-T phase diagram, and inverse magnetocaloric effect in Co2RuO4
  • 2020
  • In: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 32:48
  • Journal article (peer-reviewed)abstract
    • Static and dynamic magnetic properties of normal spinel Co2RuO4= (Co2+)A[Co3+Ru3+](B)O-4 are reported based on our investigations of the temperature (T), magnetic field (H) and frequency (f) dependence of the ac-magnetic susceptibilities and dc-magnetization (M) covering the temperature rangeT= 2 K-400 K and H up to 90 kOe. These investigations show that Co2RuO4 exhibits an antiferromagnetic (AFM) transition at T-N similar to 15.2 K, along with a spin-glass state at slightly lower temperature (T-SG) near 14.2 K. It is argued thatT(N)is mainly governed by the ordering of the spins of Co2+ ions occupying theA-site, whereas the exchange interaction between the Co2+ ions on theA-site and randomly distributed Ru(3+)on theB-site triggers the spin-glass phase, Co3+ ions on theB-site being in the low-spin non-magnetic state. Analysis of measurements ofM(H,T) for TT-N, analysis of the paramagnetic susceptibility (chi) vs.Tdata are fit to the modified Curie-Weiss law,chi=chi(0)+C/(T+theta), with chi(0)= 0.0015 emu mol(-1)Oe(-1)yielding theta= 53 K andC= 2.16 emu-K mol(-1)Oe(-1), the later yielding an effective magnetic moment mu(eff)= 4.16 mu(B)comparable to the expected value of mu(eff)= 4.24 mu(B)per Co2RuO4. Using T-N,theta and high temperature series for chi, dominant exchange constant J(1)/k(B)similar to 6 K between the Co(2+)on theA-sites is estimated. Analysis of the ac magnetic susceptibilities near T-SG yields the dynamical critical exponent z nu= 5.2 and microscopic spin relaxation time tau(0)similar to 1.16 x 10(-10)sec characteristic of cluster spin-glasses and the observed time-dependence ofM(t) is supportive of the spin-glass state. LargeM-Hloop asymmetry at low temperatures with giant exchange bias effect (H-EB similar to 1.8 kOe) and coercivity (H-C similar to 7 kOe) for a field cooled sample further support the mixed magnetic phase nature of this interesting spinel. The negative magnetocaloric effect observed belowT(N)is interpreted to be due to the AFM and SG ordering. It is argued that the observed change from positive MCE (magnetocaloric effect) forT>T(N)to inverse MCE forT
  •  
4.
  • Pramanik, Prativa, et al. (author)
  • Interplay of lattice-spin-orbital coupling and Jahn-Teller effect in noncollinear spinel Ti x Mn1-x (Fe y Co1-y )2O4 : a neutron diffraction study
  • 2024
  • In: Journal of Physics. - : Institute of Physics (IOP). - 0953-8984 .- 1361-648X. ; 36:35
  • Journal article (peer-reviewed)abstract
    • Local magnetostructural changes and dynamical spin fluctuations in doubly diluted spinel TixMn1-x(FeyCo1-y)(2)O-4 has been reported by means of neutron diffraction and magnetization studies. Two distinct sets of compositions (i) x(Ti) = 0.20 and y(Fe) = 0.18; (ii) x(Ti) = 0.40 and y(Fe) = 0.435 have been considered for this study. The first compound of equivalent stoichiometry Ti0.20Mn0.80Fe0.36Co1.64O4 exhibits enhanced tetragonal distortion across the ferrimagnetic transition temperature T-C = 258 K in comparison to the end compound MnCo2O4 (T-C similar to 180 K) with a characteristic ratio c(t)/root 2a(t) of 0.99795(8) demonstrating robust lattice-spin-orbital coupling. However, in the second case Ti0.40Mn0.60Fe0.87Co1.13O4 with higher B-site compositions, the presence of Jahn-Teller ions with distinct behavior appears to counterbalance the strong tetragonal distortion thereby ceasing the lattice-spin-orbital coupling. Both the investigated systems show the coexistence of noncollinear antiferromagnetic and ferrimagnetic components in cubic and tetragonal settings. On the other hand, the dynamical ac-susceptibility, chi(ac)(T) reveals a cluster spin-glass state with Gabay-Toulouse (GT) like mixed phases behaviour below T-C. Such dispersive behaviour appears to be sensitive to the level of octahedral substitution. Further, the field dependence of chi(ac)(T) follows the weak anisotropic GT-line behaviour with crossover exponent Phi lies in the range 1.38-1.52 on the H-T plane which is in contrast to the B-site Ti substituted MnCo2O4 spinel that appears to follow irreversible non-mean-field AT-line behaviour (Phi similar to 3 + delta). Finally, the Arrott plots analysis indicates the presence of a pseudo first-order like transition (T < 20 K) which is in consonance with and zero crossover of the magnetic entropy change within the frozen spin-glass regime.
  •  
5.
  • Pramanik, Prativa, et al. (author)
  • Spin glass states in multicomponent layered perovskites
  • 2024
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Temperature-dependent dc-magnetization and ac-susceptibility curves have been recorded for series of single and double layered Ruddlesden-Popper multicomponent perovskites with chemical formula A2BO4 and A3B2O7, respectively, with (La, Sr) on A-sites and up to 7 different cations on the B-sites (Ti, Cr, Mn, Fe, Co, Ni, Cu). The phase purity and chemical homogeneity of the compounds were investigated by X-ray diffraction and energy dispersive X-ray spectroscopy. Independently of the composition, spin glassiness is observed in both systems. Scaling analyses suggest the materials undergo spin glass phase transitions at low temperatures. Yet, qualitative differences are observed between the single-layered and double-layered systems, which are discussed in the light of the spatial dimensionality and magnetic interaction in layered oxide perovskites.
  •  
6.
  • Singha, A. D., et al. (author)
  • Reentrant canonical spin-glass dynamics and tunable field-induced transitions in (GeMn)Co2O4 Kagomé lattice
  • 2024
  • In: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 0953-8984 .- 1361-648X. ; 36:7
  • Journal article (peer-reviewed)abstract
    • We report on the reentrant canonical semi spin-glass characteristics and controllable field-induced transitions in distorted Kagomé symmetry of (GeMn)Co2O4. This B-site spinel exhibits complicated, yet interesting magnetic behaviour in which the longitudinal ferrimagnetic (FiM) order sets in below the Néel temperature TFN ∼ 77 K due to uneven moments of divalent Co (↑ 5.33 μB) and tetravalent Mn (↓ 3.87 μB) which coexists with transverse spin-glass state below 72.85 K. Such complicated magnetic behaviour is suggested to result from the competing anisotropic superexchange interactions (JAB/kB ∼ 4.3 K, JAA/kB ∼ −6.2 K and JBB/kB ∼ −3.3 K) between the cations, which is extracted following the Néel's expression for the two-sublattice model of FiM. Dynamical susceptibility (χac (f, T)) and relaxation of thermoremanent magnetization, MTRM (t) data have been analysed by means of the empirical scaling-laws such as Vogel–Fulcher law and Power law of critical slowing down. Both of which reveal the reentrant spin-glass like character which evolves through a number of intermediate metastable states. The magnitude of Mydosh parameter (Ω ∼ 0.002), critical exponent zυ = (6.7 ± 0.07), spin relaxation time τ0 = (2.33 ± 0.1) × 10−18 s, activation energy Ea/kB = (69.8 ± 0.95) K and interparticle interaction strength (T0 = 71.6 K) provide the experimental evidences for canonical spin-glass state below the spin freezing temperature TF = 72.85 K. The field dependence of TF obtained from χac (T) follows the irreversibility in terms of de Almeida–Thouless mean-field instability in which the magnitude of crossover scaling exponent Φ turns out to be ∼2.9 for the (Ge0.8Mn0.2)Co2O4. Isothermal magnetization plots reveal two field-induced transitions across 9.52 kOe (HSF1) and 45.6 kOe (HSF2) associated with the FiM domains and spin-flip transition, respectively. Analysis of the inverse paramagnetic susceptibility after subtracting the temperature independent diamagnetic term (=−3 × 10−3 emu mol−1 Oe−1) results in the effective magnetic moment = 7.654 μB/f.u. This agrees well with the theoretically obtained = 7.58 μB/f.u. resulting the cation distribution in support of the Hund's ground state spin configuration and of Mn4+ and Co2+, respectively. The H–T phase diagram has been established by analysing all the parameters (TF(H), TFN(H), HSF1(T) and HSF2(T)) extracted from various magnetization measurements. This diagram enables clear differentiation among the different phases of the (GeMn)Co2O4 and also illustrates the demarcation between short-range and long-range ordered regions.
  •  
7.
  • Weil, Matthias, et al. (author)
  • CoTeO4 : a wide-bandgap material adopting the dirutile structure type
  • 2024
  • In: Materials Advances. - : Royal Society of Chemistry. - 2633-5409. ; 5:7, s. 3001-3013
  • Journal article (peer-reviewed)abstract
    • High-quality crystals of CoTeO4 were grown by application of chemical vapor transport reactions in closed silica ampoules, starting from polycrystalline material in a temperature gradient 640 °C → 580 °C with TeCl4 as transport agent. Crystal structure analysis of CoTeO4 from single crystal X-ray data revealed a dirutile-type structure with CoII and TeVI atoms at crystallographically distinct sites, each with point group symmetry . The statistical significance and accuracy of the previously reported structural model based on powder data with the ordered arrangement of Co and Te cations was noticeably improved. CoTeO4 does not undergo a structural phase transition upon heating, but decomposes stepwise (Co2Te3O8 as intermediate phase) to Co3TeO6 as the only crystalline phase stable above 770 °C. Temperature-dependent magnetic susceptibility and dielectric measurements suggest antiferromagnetic ordering at ∼50 K. Optical absorption spectroscopy and computational studies reveal wide-band semiconductive behavior for CoTeO4. The experimentally determined band gap of ∼2.42 eV is also found for CdS, which is frequently used in photovoltaic systems but is hazardous to the environment. Hence, CoTeO4 might be a possible candidate to replace CdS in this regard.
  •  
8.
  • Weil, Matthias, et al. (author)
  • CoTeO4 - a wide-bandgap material adopting the dirutile structure type
  • 2024
  • In: Materials Advances. - 2633-5409. ; 5:7, s. 3001-3013
  • Journal article (peer-reviewed)abstract
    • High-quality crystals of CoTeO4 were grown by application of chemical vapor transport reactions in closed silica ampoules, starting from polycrystalline material in a temperature gradient 640°C → 580°C with TeCl4 as transport agent. Crystal structure analysis of CoTeO4 from single crystal X-ray data revealed a dirutile-type structure with CoII and TeVI atoms at crystallographically distinct sites, each with point group symmetry . The statistical significance and accuracy of the previously reported structural model based on powder data with the ordered arrangement of Co and Te cations was noticeably improved. CoTeO4 does not undergo a structural phase transition upon heating, but decomposes stepwise (Co2Te3O8 as intermediate phase) to Co3TeO6 as the only crystalline phase stable above 770°C. Temperature-dependent magnetic susceptibility and dielectric measurements suggest antiferromagnetic ordering at ∼50 K. Optical absorption spectroscopy and computational studies reveal wide-band semiconductive behavior for CoTeO4. The experimentally determined band gap of ∼2.42 eV is also found for CdS, which is frequently used in photovoltaic systems but is hazardous to the environment. Hence, CoTeO4 might be a possible candidate to replace CdS in this regard.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view