SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Preobrajenski I) "

Search: WFRF:(Preobrajenski I)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Palacio, Irene, et al. (author)
  • Spectroscopic characterization of the on-surface induced (cyclo)dehydrogenation of a N-heteroaromatic compound on noble metal surfaces
  • 2017
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 19:33, s. 22454-22461
  • Journal article (peer-reviewed)abstract
    • New nanoarchitectures can be built from polycyclic aromatic hydrocarbons (PAHs) by exploiting the capability of some metal surfaces for inducing cyclodehydrogenation reactions. This bottom-up approach allows the formation of nanostructures with a different dimensionality from the same precursor as a consequence of the diffusion and coupling of the PAHs adsorbed on the surface. In this work we present a thorough study, by means of a combination of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure and scanning tunneling microscopy with first principle calculations of the structural and chemical transformations undergone by pyridyl-substituted dibenzo[5]helicene on three coinage surfaces, namely Cu(110), Cu(111) and Au(111). Upon annealing, on-surface chemical reactions are promoted affecting the adsorbate/substrate and the molecule/molecule interactions. This thermally induced process favours the transformation from diffusing isolated molecules to polymeric nanographene chains and finally to N-doped graphene.
  •  
2.
  • Ahmad, Y., et al. (author)
  • NMR and NEXAFS Study of Various Graphite Fluorides
  • 2013
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:26, s. 13564-13572
  • Journal article (peer-reviewed)abstract
    • Graphite fluorides with different structural types (CyF)(n) (y = 2.5, 2, and 1) and room temperature graphite fluorides were studied by solid state,NMR and NEXAFS. Data extracted from those two techniques are complementary, providing information about the C-F bonding and the hybridization character of the carbon atom valence states. The comparison of data obtained by different methods such as NMR, Raman, and X-ray absorption leads to similar conclusions regarding the chemical bonding in fluorographites. Several major configurations of fluorinated graphites are discussed, that is, planar sheets with mainly sp(2) hybridization in room temperature graphite fluorides and corrugated sheets with sp(3) hybridization in covalent high temperature graphite fluoride. Different references such as highly oriented pyrolytic graphite (HOPG), graphitized carbon nanodiscs (graph-CNDs) and nanodiamonds (NDs) have also been investigated for comparison.
  •  
3.
  • Ahrens, J, et al. (author)
  • First measurement of the helicity-dependent (gamma)over-right-arrow(p)over-right-arrow -> p eta differential cross-section
  • 2003
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001. ; 17:2, s. 241-244
  • Journal article (peer-reviewed)abstract
    • The helicity dependence of the (γ) over right arrow(p) over right arrow -+ peta reaction has been measured for the first time at a center-of-mass angle theta(eta)*= 70degrees in the photon energy range from 780 MeV to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4pi-detector system, a circularly polarized, tagged photon beam. and a longitudinally polarized frozen-spin target. The helicity 3/2 cross-section is found to be small and the results for helicity 1/2 agree with predictions from the MAID analysis.
  •  
4.
  •  
5.
  • Ahrens, J, et al. (author)
  • Helicity dependence of the (gamma)over-right-arrow (p)over-right-arrow -> n pi(+) pi(0) reaction in the second resonance region
  • 2003
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 551:1-2, s. 49-55
  • Journal article (peer-reviewed)abstract
    • The helicity dependence of the total cross section for the (γ) over right arrow(p) over right arrownpi(+) pi(0) reaction has been measured for the first time at incident photon energies from 400 to 800 MeV The measurement was performed with the large acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, due to the intermediate production of the D-13 resonance. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
6.
  • Ahrens, J, et al. (author)
  • Helicity dependence of the gamma p -> N pi channels and multipole analysis in the Delta region
  • 2004
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001. ; 21:2, s. 323-333
  • Journal article (peer-reviewed)abstract
    • A high-quality double-polarization data set for the helicity dependence of the total and differential cross-sections for both gammap --> Npi channels in the Delta region has been obtained in the framework of the GDH experiment. The experiment, performed at the Mainz microtron MAMI, used a 4pi detection system, a circularly polarized photon beam, and a longitudinally polarized frozen-spin target. These data are included in the database to perform a multipole analysis to determine the properties of the Delta(1232)-resonance. For the resonant Delta(1232) multipoles we find a very good agreement with previous analyses, while the nonresonant ones show significant deviations.
  •  
7.
  • Ahrens, J, et al. (author)
  • Intermediate resonance excitation in the gamma p -> p pi(0)pi(0) reaction
  • 2005
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 624:3-4, s. 173-180
  • Journal article (peer-reviewed)abstract
    • The helicity dependence of the total cross section for the (gamma) over right arrow(p) over right arrow -> p pi(0)pi(0) reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement, performed at the tagged photon beam facility of the MAMI accelerator in Mainz, used the large acceptance detector DAPHNE and a longitudinally polarized frozen-spin target. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, most likely due to the intermediate production of the D-13(1520) resonance. However, the contribution of the antiparallel spin configuration, arising from other reaction mechanisms, is also not negligible. This result gives important new information to resolve the existing model discrepancies in the identification of the nucleon resonances contributing to this channel.
  •  
8.
  • Aristov, V. Yu., et al. (author)
  • Electronic properties of potassium-doped FePc
  • 2010
  • In: Organic Electronics. - : Elsevier BV. - 1566-1199. ; 11:8, s. 1461-1468
  • Journal article (peer-reviewed)abstract
    • The evolution of electronic structure of the organic semiconductor iron-phthalocyanine with potassium doping has been studied by means of photoemission spectroscopy, near-edge X-ray absorption fine structure and density functional theory (DFT) calculations. The DFT study and detailed analysis of the core-level spectra permit us to suggest possible lattice sites for the potassium ions. The data disclosed filling of the lowest unoccupied molecular orbital upon doping and associated changes of the core level absorption spectra. None of the films prepared in our studies showed a finite electronic density of states at the Fermi level. (C) 2010 Elsevier B.V. All rights reserved.
  •  
9.
  • Dutz, H, et al. (author)
  • Experimental check of the Gerasimov-Drell-Hearn sum rule for H-1
  • 2004
  • In: Physical Review Letters. - 1079-7114. ; 93:3
  • Journal article (peer-reviewed)abstract
    • For the first time we checked the fundamental Gerasimov-Drell-Hearn (GDH) sum rule for the proton experimentally in the photon energy range from 0.2-2.9 GeV with the tagged photon facilities at MAMI (Mainz) and ELSA (Bonn). New data of the doubly polarized total cross section difference are presented in the energy range from 1.6 to 2.9 GeV. The contribution to the GDH integral from 0.2-2.9 GeV yields [254+/-5(stat)+/-12(syst)] mub with negative contributions in the Regge regime at photon energies above 2.1 GeV. This trend supports the validity of the GDH sum rule.
  •  
10.
  • Dutz, H, et al. (author)
  • First measurement of the Gerasimov-Drell-Hearn sum rule for H-1 from 0.7 to 1.8 GeV at ELSA
  • 2003
  • In: Physical Review Letters. - 1079-7114. ; 91:19: 192001
  • Journal article (peer-reviewed)abstract
    • To verify the fundamental Gerasimov-Drell-Hearn (GDH) sum rule for the first time experimentally, we measured the helicity dependent total photoabsorption cross section with circularly polarized real photons and longitudinally polarized nucleons in the photon energy range 0.68-1.82 GeV with the tagged photon facility at ELSA. The experiment was carried out with a 4pi detection system, a circularly polarized tagged photon beam, and a frozen spin polarized proton target. The contribution to the GDH sum rule in this photon energy range is [49.9+/-2.4(stat)+/-2.2(syst)] mub.
  •  
11.
  • Dutz, H, et al. (author)
  • Measurement of helicity-dependent photoabsorption cross sections on the neutron from 815 to 1825 MeV
  • 2005
  • In: Physical Review Letters. - 1079-7114. ; 94
  • Journal article (peer-reviewed)abstract
    • Helicity-dependent total photoabsorption cross sections on the deuteron have been measured for the first time at ELSA (Bonn) in the photon energy range from 815 to 1825 MeV. Circularly polarized tagged photons impinging on a longitudinally polarized LiD target have been used together with a highly efficient 4 pi detector system. The data around 1 GeV are not compatible with predictions from existing multipole analyses. From the measured energy range an experimental contribution to the GDH integral on the neutron of [33.9 +/- 5.5(stat)+/- 4.5(syst)] mu b is extracted.
  •  
12.
  • Haberer, D., et al. (author)
  • Anisotropic Eliashberg function and electron-phonon coupling in doped graphene
  • 2013
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 88:8
  • Journal article (peer-reviewed)abstract
    • We investigate, with high-resolution angle-resolved photoemission spectroscopy, the spectral function of potassium-doped quasi-free-standing graphene on Au. Angle-dependent x-ray photoemission and density functional theory calculations demonstrate that potassium intercalates into the graphene/Au interface, leading to an upshift of the K-derived electronic band above the Fermi level. This empty band is what makes this system perfectly suited to disentangle the contributions to electron-phonon coupling coming from the pi band and K-derived bands. From a self-energy analysis we find an anisotropic electron-phonon coupling strength lambda of 0.1 (0.2) for the K Gamma (K M) high-symmetry directions in momentum space, respectively. Interestingly, the high-energy part of the Eliashberg function which relates to graphene's optical phonons is equal in both directions but only in K M does an additional low-energy part appear.
  •  
13.
  • Jacobse, Peter H., et al. (author)
  • One Precursor but Two Types of Graphene Nanoribbons : On-Surface Transformations of 10,10'-Dichloro-9,9'-bianthryl on Ag(111)
  • 2019
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:14, s. 8892-8901
  • Journal article (peer-reviewed)abstract
    • On-surface synthesis has emerged in the last decade as a method to create graphene nanoribbons (GNRs) with atomic precision. The underlying premise of this bottom-up strategy is that precursor molecules undergo a well-defined sequence of inter- and intramolecular reactions, leading to the formation of a single product. As such, the structure of the GNR is encoded in the precursors. However, recent examples have shown that not only the molecule, but also the coinage metal surface on which the reaction takes place, plays a decisive role in dictating the nanoribbon structure. In this work, we use scanning probe microscopy and X-ray photoelectron spectroscopy to investigate the behavior of 10,10'-dichloro-9,9'-bianthryl (DCBA) on Ag(111). Our study shows that Ag(111) can induce the formation of both seven-atom wide armchair GNRs (7-acGNRs) and 3,1-chiral GNRs (3,1-cGNRs), demonstrating that a single molecule on a single surface can react to different nanoribbon products. We additionally show that coadsorbed dibromoperylene can promote surface-assisted dehydrogenative coupling in DCBA, leading to the exclusive formation of 3,1-cGNRs.
  •  
14.
  • Lubben, Olaf, et al. (author)
  • Self-assembly of Fe nanocluster arrays on templated surfaces
  • 2012
  • In: Applied Physics Reviews. - : AIP Publishing. - 1931-9401. ; 111:7
  • Journal article (peer-reviewed)abstract
    • The growth of Fe nanoclusters on the Ge(001) and MoO2/Mo(110) surfaces has been studied using low-temperature scanning tunneling microscopy (STM) and X-ray magnetic circular dichroism (XMCD). STM results indicate that at low coverage Fe atoms self-assemble on both surfaces into well-separated nanoclusters, which nucleate at equivalent surface sites. Their size, shape, and the observed spatial separation are dictated by the substrate and depend on preparation conditions. Annealing the Fe nanoclusters on Ge(001) at 420 K leads to the formation of linear nanocluster arrays, which follow the Ge dimer rows of the substrate, due to cluster mobility at such temperature. In turn, linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature at a surface coverage greater than 0.5 monolayer. This is due to the more pronounced row pattern of the MoO2/Mo(110) surface compared to Ge(001). These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. The Fe nanoclusters formed on both surfaces show a superparamagnetic behavior as measured by XMCD. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676207]
  •  
15.
  •  
16.
  • Senkovskiy, Boris V., et al. (author)
  • Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons
  • 2017
  • In: Advanced Electronic Materials. - : Wiley. - 2199-160X. ; 3:4
  • Journal article (peer-reviewed)abstract
    • A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. By using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm−1) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. The present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications.
  •  
17.
  • Simonov, Konstantin A., et al. (author)
  • Effect of Electron Injection in Copper-Contacted Graphene Nanoribbons
  • 2016
  • In: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 9:9, s. 2735-2746
  • Journal article (peer-reviewed)abstract
    • For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 A degrees C. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (Delta E similar to 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 A degrees C activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (E (F)), thus, proving the tunability of the induced n-doping.
  •  
18.
  • Simonov, Konstantin A., et al. (author)
  • From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110) : Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy
  • 2015
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:9, s. 8997-9011
  • Journal article (peer-reviewed)abstract
    • Bottom-up strategies can be effectively implemented for the fabrication of atomically precise graphene nanoribbons. Recently, using 10,10'-dibromo-9,9'-bianthracene (DBBA) as a molecular precursor to grow armchair nanoribbons on Au(111) and Cu(111), we have shown that substrate activity considerably affects the dynamics of ribbon formation, nonetheless without significant modifications in the growth mechanism. In this paper we compare the on-surface reaction pathways for DBBA molecules on Cu(111) and Cu(110). Evolution of both systems has been studied via a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and theoretical calculations. Experimental and theoretical results reveal a significant increase in reactivity for the open and anisotropic Cu(110) surface in comparison with the close-packed Cu(111). This increased reactivity results in a predominance of the molecular substrate interaction over the intermolecular one, which has a critical impact on the transformations of DBBA on Cu(110). Unlike DBBA on Cu(111), the Ullmann coupling cannot be realized for DBBA/Cu(110) and the growth of nanoribbons via this mechanism is blocked. Instead, annealing of DBBA on Cu(110) at 250 degrees C results in the formation of a new structure: quasi-zero-dimensional flat nanographenes. Each nanographene unit has dehydrogenated zigzag edges bonded to the underlying Cu rows and oriented with the hydrogen-terminated armchair edge parallel to the [1-10] direction. Strong bonding of nanographene to the substrate manifests itself in a high adsorption energy of -12.7 eV and significant charge transfer of 3.46e from the copper surface. Nanographene units coordinated with bromine adatoms are able to arrange in highly regular arrays potentially suitable for nanotemplating.
  •  
19.
  •  
20.
  • Simonov, K. A., et al. (author)
  • Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111) : The role of organometallic intermediates
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C-Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C-H bonds on Ag(111) is reached, while on Cu(111) activation of C-H bonds occurs in parallel with the cleavage of the stronger C-Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.
  •  
21.
  • Svirskiy, Gleb I, et al. (author)
  • Electronic structure of nickel porphyrin NiP : Study by X-ray photoelectron and absorption spectroscopy
  • 2017
  • In: Physics of the Solid State. - 1063-7834. ; 59:2, s. 368-377
  • Journal article (peer-reviewed)abstract
    • Energy distributions and properties of the occupied and empty electronic states for a planar complex of nickel porphyrin NiP are studied by X-ray photoemission and absorption spectroscopy techniques. As a result of the analysis of the experimental spectra of valence photoemission, the nature and energy positions of the highest occupied electronic states were determined: the highest occupied state is formed mostly by atomic states of the porphine ligand; the following two states are associated with 3d states of the nickel atom. It was found that the lowest empty state is specific and is described by the σ-type b1g MO formed by empty Ni3dx2−y2-states and occupied 2p-states of lone electron pairs of nitrogen atoms. This specific nature of the lowest empty state is a consequence of the donor–acceptor chemical bond in NiP.
  •  
22.
  • Svirskiy, Gleb I., et al. (author)
  • Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies
  • 2021
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:18, s. 11015-11027
  • Journal article (peer-reviewed)abstract
    • The nature and structure of occupied and empty valence electronic states (molecular orbitals, MOs) of the [Ni(Salen)] molecular complex (NiO2N2C16H14) have been studied by X-ray photoemission and absorption spectroscopy combined with density functional theory (DFT) calculations. As a result, the composition of the high-lying occupied and low-lying unoccupied electronic states has been identified. In particular, the highest occupied molecular orbital (HOMO) of the complex is found to be predominantly located on the phenyl rings of the salen ligand, while the states associated with the occupied Ni 3d-derived molecular orbitals (MOs) are at higher binding energies. The lowest unoccupied molecular orbital (LUMO) is also located on the salen ligand and is formed by the 2pπ orbitals of carbon atoms in phenyl groups of the salen macrocycle. The unoccupied MOs above the LUMO reflect σ- and π-bonding between Ni and its nearest neighbours. All valence states have highly mixed character. The specific nature of the unoccupied Ni 3d-derived σ-MO is a consequence of donor-acceptor chemical bonding in [Ni(Salen)]. This journal is
  •  
23.
  • Vinogradov, A. S., et al. (author)
  • The hybridized M3d-F2p character of low-energy unoccupied electron states in 3d metal fluorides observed by F 1s absorption
  • 2005
  • In: Physica Scripta. - 0031-8949. ; T115, s. 510-512
  • Journal article (peer-reviewed)abstract
    • The near-edge fine structure of the F 1s absorption spectra of 3d metal fluorides was studied for the first time with high energy resolution. The spectra of these, the most ionic compounds of the 3d atoms, are analyzed comparing with the F 1s absorption spectrum of the molecular TiF62− anion in solid K2TiF6. The latter spectrum was afore interpreted considering the fluorine spectra of the molecular PF6− anion in a KPF6 crystal and of the gas-phase SF6 molecule. The low-energy empty electron states in the 3d metal fluorides are shown to be formed due to covalent mixing of the metal 3d and fluorine 2p electron states.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view