SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pritchard Jones K) "

Search: WFRF:(Pritchard Jones K)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
4.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
5.
  • Abdesselam, A., et al. (author)
  • Engineering for the ATLAS SemiConductor Tracker (SCT) end-cap
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008.
  •  
6.
  • Abdesselam, A., et al. (author)
  • The ATLAS semiconductor tracker end-cap module
  • 2007
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 575:3, s. 353-389
  • Journal article (peer-reviewed)abstract
    • The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker. (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 mu s buffer. The highest anticipated dose after 10 years operation is 1.4x10(14) cm(-2) in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area similar to 70 cm(2), each having 2 x 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X-0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e(-) equivalent noise charge (ENC) rising to only 1800e(-) ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mu m (r phi) resolution perpendicular to the strip directions or 580 mu m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.
  •  
7.
  •  
8.
  • Abdesselam, A., et al. (author)
  • The barrel modules of the ATLAS semiconductor tracker
  • 2006
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 568:2, s. 642-671
  • Journal article (peer-reviewed)abstract
    • This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment.
  •  
9.
  •  
10.
  • Haas, Brian J., et al. (author)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Journal article (peer-reviewed)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
11.
  • Ketelhut, S., et al. (author)
  • gamma-Ray Spectroscopy at the Limits : First Observation of Rotational Bands in Lr-255
  • 2009
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:21, s. 212501-
  • Journal article (peer-reviewed)abstract
    • The rotational band structure of Lr-255 has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, Lr-255 is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found. The structures are tentatively assigned to be based on the 1/2(-)[521] and 7/2(-)[514] Nilsson states, consistent with assignments from recently obtained alpha decay data. The experimental rotational band dynamic moment of inertia is used to test self-consistent mean-field calculations using the Skyrme SLy4 interaction and a density-dependent pairing force.
  •  
12.
  •  
13.
  •  
14.
  • Aoude, Lauren G, et al. (author)
  • Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma.
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:2, s. 408-408
  • Journal article (peer-reviewed)abstract
    • The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Moncrieff, Marc D, et al. (author)
  • Clinical Outcomes and Risk Stratification of Early-Stage Melanoma Micrometastases From an International Multicenter Study: Implications for the Management of American Joint Committee on Cancer IIIA Disease.
  • 2022
  • In: Journal of clinical oncology : official journal of the American Society of Clinical Oncology. - 1527-7755. ; 40:34, s. 3940-3951
  • Journal article (peer-reviewed)abstract
    • Indications for offering adjuvant systemic therapy for patients with early-stage melanomas with low disease burden sentinel node (SN) micrometastases, namely, American Joint Committee on Cancer (AJCC; eighth edition) stage IIIA disease, are presently controversial. The current study sought to identify high-risk SN-positive AJCC stage IIIA patients who are more likely to derive benefit from adjuvant systemic therapy.Patients were recruited from an intercontinental (Australia/Europe/North America) consortium of nine high-volume cancer centers. All were adult patients with pathologic stage pT1b/pT2a primary cutaneous melanomas who underwent SN biopsy between 2005 and 2020. Patient data, primary tumor and SN characteristics, and survival outcomes were analyzed.Three thousand six hundred seven patients were included. The median follow-up was 34 months. Pairwise disease comparison demonstrated no significant survival difference between N1a and N2a subgroups. Survival analysis identified a SN tumor deposit maximum dimension of 0.3 mm as the optimal cut point for stratifying survival. Five-year disease-specific survival rates were 80.3% and 94.1% for patients with SN metastatic tumor deposits ≥ 0.3 mm and < 0.3 mm, respectively (hazard ratio, 1.26 [1.11 to 1.44]; P < .0001). Similar findings were seen for overall disease-free and distant metastasis-free survival. There were no survival differences between the AJCC IB patients and low-risk (< 0.3 mm) AJCC IIIA patients. The newly identified high-risk (≥ 0.3 mm) subgroup comprised 271 (66.4%) of the AJCC IIIA cohort, whereas only 142 (34.8%) patients had SN tumor deposits > 1 mm in maximum dimension.Patients with AJCC IIIA melanoma with SN tumor deposits ≥ 0.3 mm in maximum dimension are at higher risk of disease progression and may benefit from adjuvant systemic therapy or enrollment into a clinical trial. Patients with SN deposits < 0.3 mm in maximum dimension can be managed similar to their SN-negative, AJCC IB counterparts, thereby avoiding regular radiological surveillance and more intensive follow-up.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Pritchard-Jones, K, et al. (author)
  • The state of research into children with cancer across Europe : new policies for a new decade
  • 2011
  • In: ecancermedicalscience. - : Ecancer Global Foundation. - 1754-6605. ; 5, s. 210-
  • Journal article (peer-reviewed)abstract
    • Overcoming childhood cancers is critically dependent on the state of research. Understanding how, with whom and what the research community is doing with childhood cancers is essential for ensuring the evidence-based policies at national and European level to support children, their families and researchers. As part of the European Union funded EUROCANCERCOMS project to study and integrate cancer communications across Europe, we have carried out new research into the state of research in childhood cancers. We are very grateful for all the support we have received from colleagues in the European paediatric oncology community, and in particular from Edel Fitzgerald and Samira Essiaf from the SIOP Europe office. This report and the evidence-based policies that arise from it come at a important junction for Europe and its Member States. They provide a timely reminder that research into childhood cancers is critical and needs sustainable long-term support.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view