SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Qi Yabing) "

Search: WFRF:(Qi Yabing)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Min, et al. (author)
  • Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation
  • 2019
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • There has been an urgent need to eliminate toxic lead from the prevailing halide perovskite solar cells (PSCs), but the current lead-free PSCs are still plagued with the critical issues of low efficiency and poor stability. This is primarily due to their inadequate photovoltaic properties and chemical stability. Herein we demonstrate the use of the lead-free, all-inorganic cesium tin-germanium triiodide (CsSn(0.5)Ge(0.5)l(3)) solid-solution perovskite as the light absorber in PSCs, delivering promising efficiency of up to 7.11%. More importantly, these PSCs show very high stability, with less than 10% decay in efficiency after 500 h of continuous operation in N-2 atmosphere under one-sun illumination. The key to this striking performance of these PSCs is the formation of a full-coverage, stable native-oxide layer, which fully encapsulates and passivates the perovskite surfaces. The native-oxide passivation approach reported here represents an alternate avenue for boosting the efficiency and stability of lead-free PSCs.
  •  
2.
  • Choi, Joong Il Jake, et al. (author)
  • Atomic-scale view of stability and degradation of single-crystal MAPbBr(3) surfaces
  • 2019
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:36, s. 20760-20766
  • Journal article (peer-reviewed)abstract
    • While organic-inorganic hybrid perovskite solar cells are emerging as promising candidates for next-generation solar cells with fascinating power conversion efficiency, the instability of perovskites remains a significant bottleneck for their commercialization. An atomic scale understanding of the degradation of hybrid perovskites, however, is only in its beginning stages because of the difficulty in preparing well-defined surface conditions for characterization. Using atomic force microscopy at ultra-high vacuum and room temperature, we report the first direct observation of the degradation process of a cleaved methylammonium lead bromide, MAPbBr(3) (MA: CH3NH3+), single crystal. Upon in situ cleavage, atomic force microscopy images show large flat terraces with monolayer height steps, which correspond to the surface of cubic MAPbBr(3) with methylammonium ligand termination. While this surface can be prepared via the cleavage process and is energetically stable, we observe that after several weeks under dark and vacuum conditions it degrades and produces clusters surrounded by pits. Guided by density functional theory calculations, we propose a degradation pathway that initiates even at low humidity levels and leads to the formation of surface PbBr2 species. We finally identify the electronic structure of the MA-bromine-terminated flat surface and find that it is correlated with a strong field-induced degradation of the MAPbBr(3) only at positive sample bias voltages.
  •  
3.
  • Choi, Joong Il Jake, et al. (author)
  • Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr(3) Surfaces
  • 2020
  • In: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:2, s. 1484-1491
  • Journal article (peer-reviewed)abstract
    • Atomistic characterization of surface termination and the corresponding mechanical properties of single-crystal methylammonium lead tribromide (MAPbBr(3)) are performed using combined atomic force microscopy (AFM) measurements and density functional theory (DFT) calculations. A clean MAPbBr(3) surface is obtained by in situ cleavage in ultrahigh vacuum at room temperature, and the subsequent AFM measurements of the as-cleaved MAPbBr(3) exhibit the coexistence of two different surface terrace types with step height differences corresponding to about half the thickness of a PbI6 octahedron layer. Concurrent friction force microscopy measurements show that the two surfaces result in two distinct friction values. Based on DFT calculations, we attribute the higher-friction and lower-friction surfaces to MABr-terminated flat and PbBr2-terminated vacant surface terminations, respectively. The calculated electronic band structures of the various MABr- and PbBr2-terminated surfaces show that the midgap states are absent, revealing the defect-tolerant nature of the ideal single-crystal MAPbBr(3) surfaces.
  •  
4.
  • Hawash, Zafer, et al. (author)
  • Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films
  • 2015
  • In: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 27:2, s. 562-569
  • Journal article (peer-reviewed)abstract
    • Doping properties of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD) hole transport layer are investigated by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and atomic force microscopy under air exposure. XPS results reveal that 3 h exposure of Li-bis(trifluoromethanesulfonyl)-imide (LiTFSI) doped spiro-MeOTAD to air results in the migration of LiTFSI from the bottom to the top across the spiro-MeOTAD film. AFM images reveal the presence of pinholes with an average diameter of similar to 135 nm and a density of similar to 3.72 holes/mu m(2). In addition, cross-sectional scanning electron microscope images reveal that these pinholes form channels across the doped spiro-MeOTAD film. Optical microscopy and Fourier transform infrared microscopy images confirm the presence of large pinholes with diameters in the range of 1-20 mu m and a density of similar to 289 holes/mm(2) as well. The presence of pinholes may play a major role in the migration processes of the LiTFSI within the spiro-MeOTAD film as well as on the degradation processes of solar cells. This is further confirmed by the rapid decreasing efficiency of perovskite solar cells with solution prepared doped spiro-MeOTAD layers when exposed to air.
  •  
5.
  • Hawash, Zafer, et al. (author)
  • Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility
  • 2017
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:17, s. 3947-3953
  • Journal article (peer-reviewed)abstract
    • For the first time, we intentionally deposit an ultrathin layer of excess methylammonium iodide (MAI) on top of a methylammonium lead iodide (MAPI) perovskite film. Using photoelectron spectroscopy, we investigate the role of excess MAI at the interface between perovskite and spiro-MeOTAD hole-transport layer in standard structure perovskite solar cells (PSCs). We found that interfacial, favorable, energy-level tuning of the MAPI film can be achieved by controlling the amount of excess MAI on top of the MAPI film. Our XPS results reveal that MAI dissociates at low thicknesses (<16 nm) when deposited on MAPbI(3). It is not the MAI layer but the dissociated species that leads to the interfacial energy-level tuning. Optimized interface energetics were verified by solar cell device testing, leading to both an increase of 19% in average steady-state power conversion efficiency (PCE) and significantly improved reproducibility, which is represented by a much lower PCE standard deviation (from 15 +/- 2% to 17.2 +/- 0.4%).
  •  
6.
  •  
7.
  • Hawash, Zafer, et al. (author)
  • Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells
  • 2018
  • In: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 5:1
  • Research review (peer-reviewed)abstract
    • 2,2,7,7-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9-spirobifluorene (spiro-MeOTAD) hole transport material (HTM) is a milestone in the history of perovskite solar cells (PSCs). Proper choice of HTMs is key factor for efficient charge extraction and stability in solar cells. Spiro-MeOTAD is proven to be the most suitable HTM for testing PSCs due to its facile implementation and high performance. Similarly, spiro-MeOTAD is receiving attention in other applications other than in solar cells due to its desirable properties. However, spiro-MeOTAD is under debate regarding the topics of cost-performance, long-term stability, degradation issues (induced by temperature, additives, film quality, and environmental conditions), coating technologies compatibility, reliance on additives, and hysteresis. In this review, the advent of spiro-MeOTAD, and related aforementioned issues about spiro-MeOTAD are discussed. In addition, spiro-MeOTAD properties, alternative and new additives, other applications, and new HTMs that is comparable or outperforms spiro-MeOTAD in PSCs are summarized. In the outlook, the future research directions based on reported results that warrant further investigations are outlined.
  •  
8.
  • Jiang, Yan, et al. (author)
  • Negligible-Pb-Waste and Upscalable Perovskite Deposition Technology for High-Operational-Stability Perovskite Solar Modules
  • 2019
  • In: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 9:13
  • Journal article (peer-reviewed)abstract
    • An upscalable perovskite film deposition method combining raster ultrasonic spray coating and chemical vapor deposition is reported. This method overcomes the coating size limitation of the existing stationary spray, single-pass spray, and spin-coating methods. In contrast with the spin-coating method (>90% Pb waste), negligible Pb waste during PbI2 deposition makes this method more environmentally friendly. Outstanding film uniformity across the entire area of 5 cm x 5 cm is confirmed by both large-area compatible characterization methods (electroluminescence and scattered light imaging) and local characterization methods (atomic force microscopy, scanning electron microscopy, photoluminescence mapping, UV-vis, and X-ray diffraction measurements on multiple sample locations), resulting in low solar cell performance decrease upon increasing device area. With the FAPb(I0.85Br0.15)(3) (FA = formamidinium) perovskite layer deposited by this method, champion solar modules show a power conversion efficiency of 14.7% on an active area of 12.0 cm(2) and an outstanding shelf stability (only 3.6% relative power conversion efficiency decay after 3600 h aging). Under continuous operation (1 sun light illumination, maximum power point condition, dry N-2 atmosphere with <5% relative humidity, no encapsulation), the devices show high light-soaking stability corresponding to an average T-80 lifetime of 535 h on the small-area solar cells and 388 h on the solar module.
  •  
9.
  • Juarez-Perez, Emilio J., et al. (author)
  • Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability
  • 2018
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 6:20, s. 9604-9612
  • Journal article (peer-reviewed)abstract
    • Hybrid lead halide perovskites have emerged as promising active materials for photovoltaic cells. Although superb efficiencies have been achieved, it is widely recognized that long-term stability is a key challenge intimately determining the future development of perovskite-based photovoltaic technology. Herein, we present reversible and irreversible photodecomposition reactions of methylammonium lead iodide (MAPbI(3)). Simulated sunlight irradiation and temperature (40-80 degrees C) corresponding to solar cell working conditions lead to three degradation pathways: (1) CH3NH2 + HI (identified as the reversible path), (2) NH3 + CH3I (the irreversible or detrimental path), and (3) a reversible Pb(0) + I-2(g) photodecomposition reaction. If only the reversible reactions (1) and (3) take place and reaction (2) can be avoided, encapsulated MAPbI(3) can be regenerated during the off-illumination timeframe. Therefore, to further improve operational stability in hybrid perovskite solar cells, detailed understanding of how to mitigate photodegradation and thermal degradation processes is necessary. First, encapsulation of the device is necessary not only to avoid contact of the perovskite with ambient air, but also to prevent leakage of volatile products released from the perovskite. Second, careful selection of the organic cations in the compositional formula of the perovskite is necessary to avoid irreversible reactions. Third, selective contacts must be as chemically inert as possible toward the volatile released products. Finally, hybrid halide perovskite materials are speculated to undergo a dynamic formation and decomposition process; this can gradually decrease the crystalline grain size of the perovskite with time; therefore, efforts to deposit highly crystalline perovskites with large crystal sizes may fail to increase the long-term stability of photovoltaic devices.
  •  
10.
  • Juarez-Perez, Emilio J., et al. (author)
  • Role of the dopants on the morphological and transport properties of Spiro-MeOTAD hole transport layer
  • 2016
  • In: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 28:16, s. 5702-5709
  • Journal article (peer-reviewed)abstract
    • The use of a solid hole transport layer (HTL) was transformational for the recent perovskite solar cell (PSC) revolution in solar energy technology. Often high efficiency PSC devices employ heavily doped hole transport materials such as spiro-MeOTAD. Independent of HTL chemistry, lithium-bis-trifluoromethanesulfonyl-imide (LiTFSI) and tert-butylpyridine (TBP) are commonly used as additives in HTL formulations for PSCs. LiTFSI and TBP were originally optimized for dye sensitized solar cells, where their roles have been extensively studied. However, in the case of PSCs, the function of TBP is not clearly understood. In this study, properties of the HTL composite deposited on flat silicon substrates were systematically measured at several length scales, e.g., macroscopically (profilometry, 4-point probe conductivity, and thermogravimetrydifferential thermal analysis), microscopically, and at the nanoscale to investigate film morphology, conductivity, and dopant distribution. Microscopic distributions of spiro-MeOTAD, LiTFSI, and TBP were determined using 2D Fourier transform infrared (FTIR) microscopy and electrostatic atomic force microscopy (EFM). Our findings reveal that the main role of TBP is to prevent phase segregation of LiTFSI and Spiro-MeOTAD, resulting in a homogeneous hole transport layer. These properties are critical for charge transport in the HTL bulk film as well as at the perovskite/HTL and HTL/electrode interfaces and for efficient solar cell performance.
  •  
11.
  • Juarez-Perez, Emilio J., et al. (author)
  • Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis
  • 2016
  • In: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 9:11, s. 3406-3410
  • Journal article (peer-reviewed)abstract
    • Thermal gravimetric and differential thermal analysis (TG-DTA) coupled with quadrupole mass spectrometry (MS) and first principles calculations were employed to elucidate the chemical nature of released gases during the thermal decomposition of CH3NH3PbI3. In contrast to the common wisdom that CH3NH3PbI3 is decomposed into CH3NH2 and HI, the major gases were methyliodide (CH3I) and ammonia (NH3). We anticipate that our findings will provide new insights into further formulations of the perovskite active material and device design that can prevent methylammonium decomposition and thus increase the long-term stability of perovskite-based opto-electronic devices.
  •  
12.
  • Liang, Jia, et al. (author)
  • Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes
  • 2018
  • In: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 8:20
  • Journal article (peer-reviewed)abstract
    • In this work all-inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn-doped all-inorganic perovskites, CsPb1-xMnxI1+2xBr2-2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1-xMnxI1+2xBr2-2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn-doped all-inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge-transfer in perovskites, therefore, PSCs based on these novel CsPb1-xMnxI1+2xBr2-2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1-xMnxI1+2xBr2-2x cells reach the highest PCE of 7.36% (when x= 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low-cost carbon electrodes (without expensive hole transport materials and Au electrodes).
  •  
13.
  • Liu, Zonghao, et al. (author)
  • Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules
  • 2018
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Besides high efficiency, the stability and reproducibility of perovskite solar cells (PSCs) are also key for their commercialization. Herein, we report a simple perovskite formation method to fabricate perovskite films with thickness over 1 mu m in ambient condition on the basis of the fast gas-solid reaction of chlorine-incorporated hydrogen lead triiodide and methylamine gas. The resultant thick and smooth chlorine-incorporated perovskite films exhibit full coverage, improved crystallinity, low surface roughness and low thickness variation. The resultant PSCs achieve an average power conversion efficiency of 19.1 +/- 0.4% with good reproducibility. Meanwhile, this method enables an active area efficiency of 15.3% for 5 cmx 5 cm solar modules. The un-encapsulated PSCs exhibit an excellent T-80 lifetime exceeding 1600 h under continuous operation conditions in dry nitrogen environment.
  •  
14.
  • Ono, Luis K., et al. (author)
  • The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells
  • 2018
  • In: Journal of Physics D. - : Institute of Physics (IOP). - 0022-3727 .- 1361-6463. ; 51:29
  • Journal article (peer-reviewed)abstract
    • 2,2 ',7,7 '-tetrakis(N,N-di-p-methoxyphenylamine)-9,9 '-spirobifluorene (spiro-MeOTAD) has been widely employed as a hole transport layer (HTL) in perovskite-based solar cells. Despite high efficiencies, issues have been reported regarding solution processed spiro-MeOTAD HTL such as pinholes and the strong dependence of electrical properties upon air exposure, which poses challenges for solar cell stability and reproducibility. In this work, we perform a systematic study to unravel the fundamental mechanisms for the generation of pinholes in solution-processed spiro-MeOTAD films. The formation of pinholes is closely related to the presence of small amounts of secondary solvents (e.g. H2O, 2-methyl-2-butene or amylene employed as a stabilizer, absorbed moisture from ambient, etc), which have low miscibility in the primary solvent generally used to dissolve spiro-MeOTAD (e.g. chlorobenzene). The above findings are not only applicable for spiro-MeOTAD (a small organic molecule), but also applicable to polystyrene (a polymer). The influence of secondary solvents in the primary solvents is the main cause for the generation of pinholes on film morphology. Our findings are of direct relevance for the reproducibility and stability in perovskite solar cells and can be extended to many other spin-coated or drop-casted thin films.
  •  
15.
  • Qiu, Longbin, et al. (author)
  • Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer
  • 2019
  • In: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 29:47
  • Journal article (peer-reviewed)abstract
    • Stability and scalability have become the two main challenges for perovskite solar cells (PSCs) with the research focus in the field advancing toward commercialization. One of the prerequisites to solve these challenges is to develop a cost-effective, uniform, and high quality electron transport layer that is compatible with stable PSCs. Sputtering deposition is widely employed for large area deposition of high quality thin films in the industry. Here the composition, structure, and electronic properties of room temperature sputtered SnO2 are systematically studied. Ar and O-2 are used as the sputtering and reactive gas, respectively, and it is found that a highly oxidizing environment is essential for the formation of high quality SnO2 films. With the optimized structure, SnO2 films with high quality have been prepared. It is demonstrated that PSCs based on the sputtered SnO2 electron transport layer show an efficiency up to 20.2% (stabilized power output of 19.8%) and a T-80 operational lifetime of 625 h. Furthermore, the uniform and thin sputtered SnO2 film with high conductivity is promising for large area solar modules, which show efficiencies over 12% with an aperture area of 22.8 cm(2) fabricated on 5 x 5 cm(2) substrates (geometry fill factor = 91%), and a T-80 operational lifetime of 515 h.
  •  
16.
  • Wu, Zhifang, et al. (author)
  • Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface
  • 2019
  • In: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 31:11
  • Journal article (peer-reviewed)abstract
    • Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low-cost fabrication. How-ever, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium-cesium-based perovskite and a moisture-resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 degrees C and 85% relative humidity (the "double 85" aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin-layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view