SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Qu Yanhua 1974 ) "

Search: WFRF:(Qu Yanhua 1974 )

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Chen, Yilin, et al. (author)
  • The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Global warming is increasingly exacerbating biodiversity loss. Populations locally adapted to spatially heterogeneous environments may respond differentially to climate change, but this intraspecific variation has only recently been considered when modelling vulnerability under climate change. Here, we incorporate intraspecific variation in genomic offset and ecological niche modelling to estimate climate change-driven vulnerability in two bird species in the Sino-Himalayan Mountains. We found that the cold-tolerant populations show higher genomic offset but risk less challenge for niche suitability decline under future climate than the warm-tolerant populations. Based on a genome-niche index estimated by combining genomic offset and niche suitability change, we identified the populations with the least genome-niche interruption as potential donors for evolutionary rescue, i.e., the populations tolerant to climate change. We evaluated potential rescue routes via a landscape genetic analysis. Overall, we demonstrate that the integration of genomic offset, niche suitability modelling, and landscape connectivity can improve climate change-driven vulnerability assessments and facilitate effective conservation management.
  •  
4.
  • Ericson, Per G P, 1956-, et al. (author)
  • A 14,000-year-old genome sheds light on the evolution and extinction of a Pleistocene vulture
  • 2022
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1
  • Journal article (peer-reviewed)abstract
    • The New World Vulture [Coragyps] occidentalis (L. Miller, 1909) is one of many species that were extinct by the end of the Pleistocene. To understand its evolutionary history we sequenced the genome of a 14,000 year old [Coragyps] occidentalis found associated with megaherbivores in the Peruvian Andes. occidentalis has been viewed as the ancestor, or possibly sister, to the extant Black Vulture Coragyps atratus, but genomic data shows occidentalis to be deeply nested within the South American clade of atratus. Coragyps atratus inhabits lowlands, but the fossil record indicates that occidentalis mostly occupied high elevations. Our results suggest that occidentalis evolved from a population of atratus in southwestern South America that colonized the High Andes 300 to 400 kya. The morphological and morphometric differences between occidentalis and atratus may thus be explained by ecological diversification following from the natural selection imposed by this new and extreme, high elevation environment. The sudden evolution of a population with significantly larger body size and different anatomical proportions than atratus thus constitutes an example of punctuated evolution.
  •  
5.
  •  
6.
  •  
7.
  • Ericson, Per G P, 1956-, et al. (author)
  • Genomic signatures of rapid adaptive divergence in a tropical montane species
  • 2021
  • In: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 17:7, s. 20210089-20210089
  • Journal article (peer-reviewed)abstract
    • Mountain regions contain extraordinary biodiversity. The environmental heterogeneity and glacial cycles often accelerate speciation and adaptation ofmontane species, but how these processes influence the genomic differentiation of these species is largely unknown. Using a novel chromosomelevel genome and population genomic comparisons, we study allopatricdivergence and selection in an iconic bird living in a tropical mountainregion in New Guinea, Archbold’s bowerbird (Amblyornis papuensis). Ourresults show that the two populations inhabiting the eastern and western Central Range became isolated ca 11 800 years ago, probably because the suitablehabitats for this cold-tolerating bird decreased when the climate got warmer.Our genomic scans detect that genes in highly divergent genomic regions areover-represented in developmental processes, which is probably associatedwith the observed differences in body size between the populations. Overall,our results suggest that environmental differences between the eastern andwestern Central Range probably drive adaptive divergence between them.
  •  
8.
  •  
9.
  • Qu, Yanhua, 1974-, et al. (author)
  • Genetic responses to seasonalvariation in altitudinal stress: whole-genome resequencing ofgreat tit in eastern Himalayas
  • 2015
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Journal article (peer-reviewed)abstract
    • Species that undertake altitudinal migrations are exposed to a considerable seasonal variationin oxygen levels and temperature. How they cope with this was studied in a population of greattit (Parus major) that breeds at high elevations and winters at lower elevations in the easternHimalayas. Comparison of population genomics of high altitudinal great tits and those living inlowlands revealed an accelerated genetic selection for carbohydrate energy metabolism (aminosugar, nucleotide sugar metabolism and insulin signaling pathways) and hypoxia response (PI3K-akt,mTOR and MAPK signaling pathways) in the high altitudinal population. The PI3K-akt, mTOR andMAPK pathways modulate the hypoxia-inducible factors, HIF-1α and VEGF protein expression thusindirectly regulate hypoxia induced angiogenesis, erythropoiesis and vasodilatation. The strategiesobserved in high altitudinal great tits differ from those described in a closely related species onthe Tibetan Plateau, the sedentary ground tit (Parus humilis). This species has enhanced selectionin lipid-specific metabolic pathways and hypoxia-inducible factor pathway (HIF-1). Comparativepopulation genomics also revealed selection for larger body size in high altitudinal great tits.
  •  
10.
  • Qu, Yanhua, 1974-, et al. (author)
  • Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau.
  • 2013
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4, s. 2071-
  • Journal article (peer-reviewed)abstract
    • The ground tit (Parus humilis) is endemic to the Tibetan plateau. It is a member of family Paridae but it was long thought to be related to the ground jays because of their morphological similarities. Here we present the ground tit's genome and re-sequence two tits and one ground jay, to clarify this controversially taxonomic status and uncover its genetic adaptations to the Tibetan plateau. Our results show that ground tit groups with two tits and it diverges from them between 7.7 and 9.9 Mya. Compared with other avian genomes, ground tit shows expansion in genes linked to energy metabolism and contractions in genes involved in immune and olfactory perception. We also found positively selected and rapidly evolving genes in hypoxia response and skeletal development. These results indicated that ground tit evolves basic strategies and 'tit-to-jay' change for coping with the life in an extreme environment.
  •  
11.
  • Qu, Yanhua, 1974-, et al. (author)
  • Long-term isolation and stability explain high genetic diversity in the Eastern Himalaya.
  • 2014
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 23:3, s. 705-20
  • Journal article (peer-reviewed)abstract
    • China's Southwest Mountainous Region in Eastern Himalaya is a ‘biodiversity hotspot’ of global interest for conservation. Yet little is known about what has driven this unique diversity. The dramatic topography of the Southwest Mountainous Region resulting from the tectonic uplift during the late Pliocene leads to dramatic ecological stratification, which creates physical barriers to migration and isolates organisms into different subregions and mountain systems. This agrees with the observation that the phylogeographical patterns found in four species of birds (Alcippe morrisonia, Stachyridopsis ruficeps, Parus monticolus and Aegithalos concinnus) distributed in this region are characterized by deep splits between lineages that coalesce between 0.8 and 2.1 Ma. Unlike other regions at this latitude, the Southwest Mountainous Region was largely unaffected by the Pleistocene glaciations. Genetically isolated populations of these birds could thus be maintained throughout the Pleistocene in these rather stable montane environments. In comparison, we found radically different phylogeographical patterns in populations of the same four species distributed in the adjacent lowland, the Central China region. This region has a distinctly different geological history with dramatic, climate-induced shifts in vegetation during the Pleistocene. Here, we found a considerably less geographical structure in the genetic variation and a much younger coalescence time (0.3-0.7 Ma). We also found evidence of genetic bottlenecks during the glacial periods and gene flow during the interglacial expansions. We conclude that the high genetic diversity in the Southwest Mountainous Region results from a long-term in situ diversification within these evolutionary isolated and environment stable montane habitats.
  •  
12.
  • Qu, Yanhua, 1974-, et al. (author)
  • Molecular phylogenetic relationship of snow finch complex (genera Montifringilla, Pyrgilauda, and Onychostruthus) from the Tibetan plateau.
  • 2006
  • In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 40:1, s. 218-26
  • Journal article (peer-reviewed)abstract
    • The snow finch complex (Montifringilla, Pyrgilauda, and Onychostruthus) has its center of distribution on the Tibetan plateau, with six out of seven species in the genera occurring there. Phylogenetic relationships among these six species of three genera have been studied based on DNA sequence data obtained from the mitochondrial cytochrome b gene and the nuclear myoglobin gene. The results support monophyly of the snow finch complex group and three major evolutionary lineages are recognized. The first clade consists of ruficollis, blanfordi, and davidiana. These three taxa are sometimes placed in their own genus, Pyrgilauda, and the DNA data supports this. The three taxa nivalis, henrici, and adamsi have traditionally been placed in the genus Montifringilla, and they group together strongly in the present analysis. The results further suggest that nivalis and adamsi are more closely related to each other than are nivalis and henrici, despite that the latter two are often regarded as conspecific. The third distinct lineage within the snow finch complex consists of taczanowskii, which has been placed its own genus, Onychostruthus. This taxon has a basal position in the phylogenetic tree and is sister to all other snow finches. We estimated that taczanowskii split from the other taxa between 2 and 2.5 mya, i.e., about the time for the most recent uplift of the Tibetan plateau, "the Tibet movement", 3.6-1.7 mya. Cladogenesis within the Montifringilla and Pyrgilauda clades seems to be contemporary with the second phase of "Tibet movement" at 2.5 mya and the third phase at 1.7 mya and "Kunhuang movement" in 1.5-0.6 mya. The dramatic climatic and ecological changes following from the uplift of the Tibetan plateau, together with the cyclic contraction and expansion of suitable habitats during the Pleistocene, are probably the most important factors for the cladogenesis in snow finch complex.
  •  
13.
  • Qu, Yanhua, 1974-, et al. (author)
  • Postglacial colonization of the Tibetan plateau inferred from the matrilineal genetic structure of the endemic red-necked snow finch, Pyrgilauda ruficollis.
  • 2005
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 14:6, s. 1767-81
  • Journal article (peer-reviewed)abstract
    • Most phylogeographical studies of postglacial colonization focus on high latitude locations in the Northern Hemisphere. Here, we studied the phylogeographical structure of the red-necked snow finch Pyrgilauda ruficollis, an endemic species of the Tibetan plateau. We analysed 879 base pairs (bp) of the mitochondrial cytochrome b gene and 529 bp of the control region in 41 birds from four regional groups separated by mountain ranges. We detected 34 haplotypes, 31 of which occurred in a single individual and only three of which were shared among sampling sites within regional groups or among regional groups. Haplotype diversity was high (h = 0.94); nucleotide diversity was low (eth = 0.00415) and genetic differentiation was virtually non-existent. Analyses of mismatch distributions and geographically nested clades yielded results consistent with contiguous range expansion, and the expansion times were estimated as 0.07-0.19 million years ago (Ma). Our results suggest that P. ruficollis colonized the Tibetan plateau after the extensive glacial period (0.5-0.175 Ma), expanding from the eastern margin towards the inner plateau. Thus, in contrast to many of the post-glacial phylogeographical structures known at high latitudes, this colonization occurred without matrilineal population structuring. This might be due to the short glacial cycles typical of the Tibetan plateau, adaptation of P. ruficollis to cold conditions, or refugia and colonized habitat being semicontinuous and thus promoting population mixing.
  •  
14.
  • Qu, Yanhua, 1974-, et al. (author)
  • Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian Tree Sparrows
  • 2019
  • In: National Science Review. - : Oxford University Press (OUP). - 2053-714X .- 2095-5138.
  • Journal article (peer-reviewed)abstract
    • Known as the ‘third polar region’, the Qinghai-Tibet Plateau represents one of the harshest highland environments in the world and yet a number of organisms thrive there. Previous studies of birds, animals and humans have focused on well-differentiated populations in later stages of phenotypic divergence. The adaptive processes during the initial phase of highland adaptation remain poorly understood. We studied a human commensal, the Eurasian Tree Sparrow, which has followed human agriculture to the Qinghai-Tibet Plateau. Despite strong phenotypic differentiation at multiple levels, in particular in muscle-related phenotypes, highland and lowland populations show shallow genomic divergence and the colonization event occurred within the past few thousand years. In a one-month acclimation experiment investigating phenotypic plasticity, we exposed adult lowland tree sparrows to a hypoxic environment and did not observe muscle changes. Through population genetic analyses, we identified a signature of polygenic adaptation, whereby shifts in allele frequencies are spread across multiple loci, many of which are associated with muscle-related processes. Our results reveal a case of positive selection in which polygenic adaptation appears to drive rapid phenotypic evolution, shedding light on early stages of adaptive evolution to a novel environment.
  •  
15.
  • Qu, Yanhua, 1974-, et al. (author)
  • The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 10.1073/pnas.2012398118:13, s. e2012398118-e2012398118
  • Journal article (peer-reviewed)abstract
    • Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai–Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.
  •  
16.
  • Qu, Yanhua, 1974-, et al. (author)
  • The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography
  • 2015
  • In: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 42:1, s. 179-192
  • Journal article (peer-reviewed)abstract
    • Aim: East Asia is known for its exceptionally high biological diversity and endemism. Various geological and climatic events during the Pliocene and Pleistocene have been invoked to explain this high endemism, and these processes have had different impacts on different organisms. Herein, we investigate the relative role of these historical processes in the genetic evidence for endemism of intraspecific lineages of two East Asian species: the grey-cheeked fulvetta (Alcippe morrisonia) and the red-headed tree babbler (Stachyridopsis ruficeps).Location: East Asia.Methods: We studied the genetic structure based on mitochondrial and nuclear DNA and evaluated the phylogeographical lineages using coalescent species tree approaches. The influences of different historical processes on diversification among phylogeographical lineages were analysed using coalescent models. We tested correlations between ecological divergence and phylogeographical splits.Results: The genetic structure analysis and species tree estimation revealed three deeply divergent lineages within both species. One lineage is endemic to the mountains of Southwest China and the other to Taiwan. Coalescent simulations suggested that lineage diversification mostly occurred during the late Pliocene. Within this time frame, uplift of the mountains of Southwest China and formation of the island of Taiwan are geological events consistent with the geographical isolation and ecological niche divergence of these phylogeographical lineages.Main conclusions: Our results suggest that the main driver of avian endemism in East Asia was the formation of new montane and island habitats following the uplift of the mountains of Southwest China and formation of the island of Taiwan in the Pliocene. However, the populations in the two regions were affected differently by the climatic oscillations during the Pleistocene. The mountains of Southwest China were climatically stable during glaciations,allowing populations to persist throughout the Pleistocene and maintain their genetic uniqueness. In contrast, glaciations resulted in lowered sea levels, allowing dispersal between the island of Taiwan and mainland China, thus obscuring the genetic endemism of the Taiwanese populations.
  •  
17.
  • She, Huishang, et al. (author)
  • Quantifying adaptive divergence of the snowfinches in a common landscape
  • 2022
  • In: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 28, s. 2579-2592
  • Journal article (peer-reviewed)abstract
    • AimSpecies living in a shared environment face similar selective pressures and often evolve adaptive divergence to avoid competition. Quantifying phenotypic divergence and its genetic parallelism among sympatric species is important for understanding of ecologically moderated biodiversity. Here, we integrate ecologic, phenotypic and genomic datasets to study to what extent three sympatrically snowfinches (Montifringilla adamsi, Pyrgilauda ruficollis and Onychostruthus taczanowskii) differ in their adaptations in order to co-exist in a shared environment.LocationQinghai–Tibetan Plateau.MethodsWe used principal component analysis to summarize and compare environmental and phenotypic divergence. We compared phenotypes relevant to body and beak sizes (n = 68) because they are indicators of niche and food segregation, thus critical for establishing co-existence of sympatric birds. We used comparative genomics (n = 33) to identify genetic loci that are highly divergent between species as well as loci unique for each of species. Using vector analyses, we integrated correlation and permutation to quantify parallelism between phenotypic and genetic divergences.ResultsWe found that body and beak sizes are significantly different among three snowfinches. The phenotypic differentiations are greater in species that share similar ecological conditions than in those that do not. We showed that genes related to developmental process are over-represented within highly divergent genomic regions and unique genetic loci of each species. We found that the extent of phenotypic divergence between snowfinch pairs is more strongly correlated with the magnitude of divergence in developmental genes than in the whole genome.Main conclusionsAdaptive divergence of sympatric snowfinches is highly constrained on developmental genes. As this genetic divergence is strongly correlated with divergence of the traits related to segregation in niche and food resources, this correlation reflects either causal effects or indirect consequences of ecological mediated changes. Our study provides novel insights into the mechanisms underlying evolutionary versatility and ecological success among sympatric species.
  •  
18.
  •  
19.
  • Zhang, Ruiying, et al. (author)
  • Comparative phylogeography of two widespread magpies : importance of habitat preference and breeding behavior on genetic structure in China.
  • 2012
  • In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 65:2, s. 562-72
  • Journal article (peer-reviewed)abstract
    • Historical geological events and climatic changes are believed to have played important roles in shaping the current distribution of species. However, sympatric species may have responded in different ways to such climatic fluctuations. Here we compared genetic structures of two corvid species, the Azure-winged Magpie Cyanopica cyanus and the Eurasian Magpie Pica pica, both widespread but with different habitat dependence and some aspects of breeding behavior. Three mitochondrial genes and two nuclear introns were used to examine their co-distributed populations in East China and the Iberian Peninsula. Both species showed deep divergences between these two regions that were dated to the late Pliocene/early Pleistocene. In the East Chinese clade of C. cyanus, populations were subdivided between Northeast China and Central China, probably since the early to mid-Pleistocene, and the Central subclade showed a significant pattern of isolation by distance. In contrast, no genetic structure was found in the East China populations of P. pica. We suggest that the different patterns in the two species are at least partly explained by ecological differences between them, especially in habitat preference and perhaps also breeding behavior. These dissimilarities in life history traits might have affected the dispersal and survival abilities of these two species differently during environmental fluctuations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view