SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quast G.) "

Sökning: WFRF:(Quast G.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
3.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
4.
  • Badelek, B, et al. (författare)
  • The photon collider at TESLA
  • 2004
  • Ingår i: International Journal of Modern Physics A. - 0217-751X. ; 19:30, s. 5097-5186
  • Forskningsöversikt (refereegranskat)abstract
    • High energy photon colliders (gammagamma,gammae) are based on e(-)e(-) linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.(1) Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.
  •  
5.
  • Quast, Ulrich, et al. (författare)
  • A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry
  • 2016
  • Ingår i: Physica medica (Testo stampato). - : ELSEVIER SCI LTD. - 1120-1797 .- 1724-191X. ; 32:6, s. 741-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detectors response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality index Q(BT) ((E) over bar), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, D-w, around BT sources. Materials and methods: While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT) ((E) over bar) = TPR1020((E) over bar) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT) ((E) over bar) = D-prim(r = 2 cm; theta(0) = 90 degrees)/D-prim(r(0) = 1 cm; theta(0) = 90 degrees), utilizing precise primary absorbed dose data, D-prim, from source reference databases, without additional MC-calculations. Results and discussion: For BT photon sources used clinically, Q(BT) ((E) over bar) enables to determine the effective mean linear attenuation coefficient (mu) over bar (E) and thus the effective energy of the primary photons E-prim(eff)(r(0), theta(0)) at the TG-43 reference position P-ref (r(0) = 1 cm; theta(0) = 90 degrees) being close to the mean total photon energy (E) over bar (tot)(r(0), theta(0)). If one has calibrated detectors, published (E) over bar (tot)(r) and the BT radiation quality correction factor k(Q, Q0)(BT) ((E) over bar, r, theta) for different BT radiation qualities Q and Q(0), the detectors response can be determined and D-w(r, theta) measured in the vicinity of BT photon sources. Conclusions: This novel brachytherapy photon radiation quality index Q(BT) characterizes sufficiently accurate and precise the primary photon` s penetration probability and scattering potential. (C) 2016 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy