SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rachlew E) "

Search: WFRF:(Rachlew E)

  • Result 1-50 of 209
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
11.
  •  
12.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
13.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Journal article (peer-reviewed)
  •  
31.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
32.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
33.
  • Hobirk, J., et al. (author)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Journal article (peer-reviewed)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
34.
  • Frassinetti, Lorenzo, et al. (author)
  • Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:1
  • Journal article (peer-reviewed)abstract
    • Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with rho* consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on rho*, qualitatively in agreement with the peeling-ballooning (P-B) model. The nu* dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to approximate to 10% at low nu*. The pedestal stability shows an improvement with decreasing nu*. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The beta dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with beta, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing beta is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing beta. The P-B analysis shows that the stability reduction with increasing beta at high nu* is due to the destabilizing effect of the increased relative shift.
  •  
35.
  •  
36.
  • Litaudon, X., et al. (author)
  • Development of steady-state scenarios compatible with ITER-like wall conditions
  • 2007
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B529-B550
  • Journal article (peer-reviewed)abstract
    • A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q(95) similar to 5 and high triangularity, 3 (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching beta(N) similar to 2 at B(o) similar to 3.1 T. Operating at higher 6 has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high beta(N) regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of beta(N) above the 'no-wall magnetohydrodynamic limit' (beta(N) similar to 3.0) have been sustained for a resistive current diffusion time in high-delta configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with similar to 30 MW of applied heating power (at 1.2 MA/2.7 T, q(95) similar to 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
  •  
37.
  • Lloyd, B., et al. (author)
  • Overview of physics results from MAST
  • 2007
  • In: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 47:10, s. S658-S667
  • Journal article (peer-reviewed)abstract
    • Substantial advances have been made on the Mega AmpÚre Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements.
  •  
38.
  • Meyer, H., et al. (author)
  • Overview of physics results from MAST
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104017-
  • Journal article (peer-reviewed)abstract
    • Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
  •  
39.
  • Hellsten, Torbjörn, et al. (author)
  • Fast wave current drive in JET ITB-plasma
  • 2005
  • In: AIP Conference Proceedings. - : AIP. - 0094-243X. ; , s. 273-278
  • Conference paper (peer-reviewed)abstract
    • Fast wave current drive has been performed in JET plasmas with internal transport barriers, ITBs, and strongly reversed magnetic shear. Although the current drive efficiency of the power absorbed on the electrons is fairly high, only small effects are seen in the central current density. The main reasons are the parasitic absorption of RF power, the strongly inductive nature of the plasma and the interplay between the fast wave driven current and bootstrap current. The direct electron heating in the FWCD experiments is found to be strongly degraded compared to that with the dipole phasing.
  •  
40.
  •  
41.
  • Itala, E, et al. (author)
  • Molecular fragmentation of pyrimidine derivatives following site-selective carbon core ionization
  • 2011
  • In: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 184:3-6, s. 119-124
  • Journal article (peer-reviewed)abstract
    • Ionization-site-dependent fragmentation of three cyclic biomolecules - uracil, 5-bromouracil and thymine - has been studied using electron-energy-resolved photoelectronphotoion-photoion coincidence spectroscopy. Previous studies concerning ionization site dependent fragmentation have mainly been carried out with linear molecules. The results reported here show that all studied molecules have dicationic fragmentation channels whose intensity depends on the initial core-ionization site, although these channels cover only a relatively small fraction of the total fragment yield. The present study shows on one hand, that it is often the surrounding bond(s) of the ionized atom that will break following the initial core ionization, and on the other hand, that some specific fragmentation channels can display strong site-dependency where there is no direct correlation between the ionization site and the bond breakage locations.
  •  
42.
  • Litaudon, X., et al. (author)
  • Prospects for steady-state scenarios on JET
  • 2007
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 47:9, s. 1285-1292
  • Journal article (peer-reviewed)abstract
    • In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (n(1) similar to 4 x 10(19) m(-3)), with ITER-relevant safety factor (q(95) similar to 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (similar to 45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (similar to 15 MW), an upgrade of the NB power (35 MW/20s or 17.5 MW/40s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (similar to 2.5 MA) and density (n(1) > 5 x 10(19) m(-3)), with high beta(N) (beta(N) > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (similar to 3.5 T).
  •  
43.
  •  
44.
  •  
45.
  • Corre, Y., et al. (author)
  • Hybrid H-mode scenario with nitrogen seeding and type III ELMs in JET
  • 2008
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:11, s. 115012-
  • Journal article (peer-reviewed)abstract
    • The performance of the 'hybrid' H-mode regime (long pulse operation with high neutron fluency) has been extensively investigated in JET during the 2005-2007 experimental campaign up to normalized pressure beta(N) = 3, toroidal magnetic field B-t = 1.7T, with type I ELMs plasma edge conditions. The optimized external current drive sources, self-generated non-inductive bootstrap current and plasma core stability properties provide a good prospect of achieving a high fusion gain at reduced plasma current for long durations in ITER. One of the remaining issues is the erosion of the divertor target plates associated with the type I ELM regime. A possible solution could be to operate with a plasma edge in the type III ELM regime (reduced transient and stationary heat loads) obtained with impurity seeding. An integrated hybrid type III ELM regime with a normalized pressure beta(N) = 2.6 (PNBI similar to 20-22 MW) and a thermal confinement factor of H-98* 98(y, 2) similar to 0.83 has been recently successfully developed on JET with nitrogen seeding. This scenario shows good plasma edge condition (compatible with the future ITER-like wall on JET) and moderate MHD activity. In this paper, we report on the experimental development of the scenario (with plasma current I-p = 1.7MA and magnetic field B-t = 1.7T) and the trade-off between heat load reduction at the target plates and global confinement due to nitrogen seeding and type III ELM working conditions.
  •  
46.
  •  
47.
  • de la Luna, E., et al. (author)
  • Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER
  • 2016
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 56:2
  • Journal article (peer-reviewed)abstract
    • Experiments on JET, with both the previous carbon wall (JET-C) and the new Be/W wall (JET-ILW), have demonstrated the efficacy of using a fast vertical plasma motion (known as vertical kicks in JET) for active ELM control. In this paper we report on a series of experiments that have been recently conducted in JET-ILW with the goal of further improving the physics understanding of the processes governing the triggering of ELMs via vertical kicks. This is a necessary step to confidently extrapolate this ELM control method to ITER. Experiments have shown that ELMs can be reliably triggered provided a minimum vertical plasma displacement and velocity is imposed. The magnitude of the minimum displacement depends on the plasma parameters, being smaller for higher pedestal temperatures and lower collisionalities, which is encouraging in view of ITER. Modelling and stability analysis suggest that a localized current density induced by the vertical plasma movement close to the separatrix plays a major role in the ELM triggering mechanism, which is consistent with the experimental observations. The implications of these results for the extrapolation of this ELM control scheme to ITER are discussed.
  •  
48.
  • Delabie, E., et al. (author)
  • In situ wavelength calibration of the edge CXS spectrometers on JET
  • 2016
  • In: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 87:11
  • Journal article (peer-reviewed)abstract
    • A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-Perot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 angstrom, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction.
  •  
49.
  • Garzotti, L., et al. (author)
  • Scenario development for D-T operation at JET
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 59:7
  • Journal article (peer-reviewed)abstract
    • The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher additional heating power (32 MW neutral beam injection + 8 MW ion cyclotron resonance heating). There are several challenges presented by operations with the new wall: a general deterioration of the pedestal confinement; the risk of heavy impurity accumulation in the core, which, if not controlled, can cause the radiative collapse of the discharge; the requirement to protect the divertor from excessive heat loads, which may damage it permanently. Therefore, an intense activity of scenario development has been undertaken at JET during the last three years to overcome these difficulties and prepare the plasmas needed to demonstrate stationary high fusion performance and clear alpha particle effects. The paper describes the status and main achievements of this scenario development activity, both from an operational and plasma physics point of view.
  •  
50.
  • Grigore, E., et al. (author)
  • Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W
  • 2016
  • In: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Journal article (peer-reviewed)abstract
    • In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 mu m to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 degrees C and a power density of about 3 MW m(-2). A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 209
Type of publication
journal article (186)
conference paper (14)
research review (8)
doctoral thesis (1)
Type of content
peer-reviewed (208)
other academic/artistic (1)
Author/Editor
Frassinetti, Lorenzo (153)
Zychor, I (151)
Rubel, Marek (147)
Rachlew, Elisabeth, ... (147)
Hellsten, Torbjörn (146)
Ström, Petter (146)
show more...
Weckmann, Armin (146)
Eriksson, Jacob, Dr, ... (145)
Conroy, Sean (143)
Menmuir, Sheena (142)
Bergsåker, Henric (141)
Bykov, Igor (141)
Cecconello, Marco (141)
Andersson Sundén, Er ... (139)
Ericsson, Göran (139)
Hjalmarsson, Anders (138)
Possnert, Göran, 195 ... (137)
Sjöstrand, Henrik, 1 ... (137)
Weiszflog, Matthias (137)
Hellesen, Carl, 1980 ... (132)
Binda, Federico, 198 ... (128)
Skiba, Mateusz, 1985 ... (128)
Dzysiuk, Nataliia (127)
Petersson, Per (123)
Asp, E (112)
Elevant, Thomas (112)
Ivanova, Darya (112)
Garcia Carrasco, Alv ... (82)
Johnson, Thomas (75)
Tholerus, Simon, 198 ... (74)
Tholerus, Emmi (66)
Garcia-Carrasco, Alv ... (62)
Jonsson, Thomas, 197 ... (57)
Giroud, C (51)
Rachlew, Elisabeth (48)
Joffrin, E (47)
de la Luna, E (45)
Alper, B (44)
Brix, M (43)
Hobirk, J (43)
Huber, A (40)
Buratti, P (39)
Coffey, I (39)
Lerche, E (39)
Mailloux, J (39)
Crombe, K (38)
Frigione, D (38)
Kempenaars, M (38)
Valisa, M (38)
Zoletnik, S (38)
show less...
University
Royal Institute of Technology (205)
Uppsala University (151)
Chalmers University of Technology (36)
Lund University (1)
Language
English (209)
Research subject (UKÄ/SCB)
Natural sciences (190)
Engineering and Technology (20)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view