SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rahnenführer Jörg) "

Search: WFRF:(Rahnenführer Jörg)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Keller, Magdalena, et al. (author)
  • Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth
  • 2023
  • In: Journal of Experimental & Clinical Cancer Research. - : BioMed Central (BMC). - 1756-9966. ; 42
  • Journal article (peer-reviewed)abstract
    • Background: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored.Methods: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo.Results: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3 beta, and transcription factors, including HIF1 alpha, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo.Conclusions: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.
  •  
2.
  • Edlund, Karolina, et al. (author)
  • Prognostic Impact of Tumor Cell Programmed Death Ligand 1 Expression and Immune Cell Infiltration in NSCLC
  • 2019
  • In: Journal of Thoracic Oncology. - : Elsevier BV. - 1556-0864 .- 1556-1380. ; 14:4, s. 628-640
  • Journal article (peer-reviewed)abstract
    • Introduction: Infiltration of T and B/plasma cells has been linked to NSCLC prognosis, but this has not been thoroughly investigated in relation to the expression of programmed death ligand 1 (PD-L1). Here, we determine the association of lymphocytes and PD-L1 with overall survival (OS) in two retrospective cohorts of operated NSCLC patients who were not treated with checkpoint inhibitors targeting the programmed death 1/PD-L1 axis. Moreover, we evaluate how PD-L1 positivity and clinicopathologic factors affect the prognostic association of lymphocytes.Methods: Cluster of differentiation (CD) 3 (CD3)-, CD8-, CD4-, forkhead box P3 (FOXP3)-, CD20-, CD79A-, and immunoglobulin kappa constant (IGKC)-positive immune cells, and tumor PD-L1 positivity, were determined by immunohistochemistry on tissue microarrays (n = 705). Affymetrix data was analyzed for a patient subset, and supplemented with publicly available transcriptomics data (N = 1724). Associations with OS were assessed by Kaplan-Meier plots and uni- and multivariate Cox regression.Results: Higher levels of T and B plasma cells were associated with longer OS (p = 0.004 and p < 0.001, for CD8 and IGKC, respectively). Highly proliferative tumors with few lymphocytes had the worst outcome. No association of PD-L1 positivity with OS was observed in a nonstratified patient population; however, a significant association with shorter OS was observed in never-smokers (p = 0.009 and p = 0.002, 5% and 50% cutoff). Lymphocyte infiltration was not associated with OS in PD-L1–positive tumors (50% cutoff). The prognostic association of lymphocyte infiltration also depended on the patients’ smoking history and histologic subtype.Conclusions: Proliferation, PD-L1 status, smoking history, and histology should be considered if lymphocyte infiltration is to be used as a prognostic biomarker.
  •  
3.
  • Grinberg, Marianna, et al. (author)
  • Reaching the limits of prognostication in non-small cell lung cancer : an optimized biomarker panel fails to outperform clinical parameters.
  • 2017
  • In: Modern Pathology. - : Elsevier BV. - 0893-3952 .- 1530-0285. ; 30:7, s. 964-977
  • Journal article (peer-reviewed)abstract
    • Numerous protein biomarkers have been analyzed to improve prognostication in non-small cell lung cancer, but have not yet demonstrated sufficient value to be introduced into clinical practice. Here, we aimed to develop and validate a prognostic model for surgically resected non-small cell lung cancer. A biomarker panel was selected based on (1) prognostic association in published literature, (2) prognostic association in gene expression data sets, (3) availability of reliable antibodies, and (4) representation of diverse biological processes. The five selected proteins (MKI67, EZH2, SLC2A1, CADM1, and NKX2-1 alias TTF1) were analyzed by immunohistochemistry on tissue microarrays including tissue from 326 non-small cell lung cancer patients. One score was obtained for each tumor and each protein. The scores were combined, with or without the inclusion of clinical parameters, and the best prognostic model was defined according to the corresponding concordance index (C-index). The best-performing model was subsequently validated in an independent cohort consisting of tissue from 345 non-small cell lung cancer patients. The model based only on protein expression did not perform better compared to clinicopathological parameters, whereas combining protein expression with clinicopathological data resulted in a slightly better prognostic performance (C-index: all non-small cell lung cancer 0.63 vs 0.64; adenocarcinoma: 0.66 vs 0.70, squamous cell carcinoma: 0.57 vs 0.56). However, this modest effect did not translate into a significantly improved accuracy of survival prediction. The combination of a prognostic biomarker panel with clinicopathological parameters did not improve survival prediction in non-small cell lung cancer, questioning the potential of immunohistochemistry-based assessment of protein biomarkers for prognostication in clinical practice.Modern Pathology advance online publication, 10 March 2017; doi:10.1038/modpathol.2017.14.
  •  
4.
  • Hellwig, Birte, et al. (author)
  • Epsin Family Member 3 and Ribosome-Related Genes Are Associated with Late Metastasis in Estrogen Receptor-Positive Breast Cancer and Long-Term Survival in Non-Small Cell Lung Cancer Using a Genome-Wide Identification and Validation Strategy
  • 2016
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Background: In breast cancer, gene signatures that predict the risk of metastasis after surgical tumor resection are mainly indicative of early events. The purpose of this study was to identify genes linked to metastatic recurrence more than three years after surgery.Methods: Affymetrix HG U133A and Plus 2.0 array datasets with information on metastasis-free, disease-free or overall survival were accessed via public repositories. Time restricted Cox regression models were used to identify genes associated with metastasis during or after the first three years post-surgery (early-and late-type genes). A sequential validation study design, with two non-adjuvantly treated discovery cohorts (n = 409) and one validation cohort (n = 169) was applied and identified genes were further evaluated in tamoxifen-treated breast cancer patients (n = 923), as well as in patients with non-small cell lung (n = 1779), colon (n = 893) and ovarian (n = 922) cancer.Results: Ten late-and 243 early-type genes were identified in adjuvantly untreated breast cancer. Adjustment to clinicopathological factors and an established proliferation-related signature markedly reduced the number of early-type genes to 16, whereas nine late-type genes still remained significant. These nine genes were associated with metastasis-free survival (MFS) also in a non-time restricted model, but not in the early period alone, stressing that their prognostic impact was primarily based on MFS more than three years after surgery. Four of the ten late-type genes, the ribosome-related factors EIF4B, RPL5, RPL3, and the tumor angiogenesis modifier EPN3 were significantly associated with MFS in the late period also in a meta-analysis of tamoxifen-treated breast cancer cohorts. In contrast, only one late-type gene (EPN3) showed consistent survival associations in more than one cohort in the other cancer types, being associated with worse outcome in two non-small cell lung cancer cohorts. No late-type gene was validated in ovarian and colon cancer.Conclusions: Ribosome-related genes were associated with decreased risk of late metastasis in both adjuvantly untreated and tamoxifen-treated breast cancer patients. In contrast, high expression of epsin (EPN3) was associated with increased risk of late metastasis. This is of clinical relevance considering the well-understood role of epsins in tumor angiogenesis and the ongoing development of epsin antagonizing therapies.
  •  
5.
  • Lindskog, Cecilia, et al. (author)
  • The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling
  • 2014
  • In: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 28:12, s. 5184-5196
  • Journal article (peer-reviewed)abstract
    • The combined action of multiple cell types is essential for the physiological function of the lung, and increased awareness of the molecular constituents characterizing each cell type is likely to advance the understanding of lung biology and disease. In the current study, we used genome-wide RNA sequencing of normal lung parenchyma and 26 additional tissue types, combined with antibody-based protein profiling, to localize the expression to specific cell types. Altogether, 221 genes were found to be elevated in the lung compared with their expression in other analyzed tissues. Among the gene products were several well-known markers, but also several proteins previously not described in the context of the lung. To link the lungspecific molecular repertoire to human disease, survival associations of pneumocyte-specific genes were assessed by using transcriptomics data from 7 non-small-cell lung cancer (NSCLC) cohorts. Transcript levels of 10 genes (SFTPB, SFTPC, SFTPD, SLC34A2, LAMP3, CACNA2D2, AGER, EMP2, NKX2-1, and NAPSA) were significantly associated with survival in the adenocarcinoma subgroup, thus qualifying as promising biomarker candidates. In summary, based on an integrated omics approach, we identified genes with elevated expression in lung and localized corresponding protein expression to different cell types. As biomarker candidates, these proteins may represent intriguing starting points for further exploration in health and disease.-Lindskog, C., Fagerberg, L., Hallstrom, B., Edlund, K., Hellwig, B., Rahnenfuhrer, J., Kampf, C., Uhlen, M., Ponten, F., Micke, P. The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling.
  •  
6.
  • Lohr, Miriam, et al. (author)
  • The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer
  • 2013
  • In: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 333:2, s. 222-228
  • Journal article (peer-reviewed)abstract
    • A prognostic impact of immunoglobulin kappa C (IGKC) expression has been described in cancer. We analysed the influence of B-cell and plasma cell markers, as well as IGKC expression, in non-small lung cancer (NSCLC) using immunohistochemistry on a tissue microarray. IGKC protein expression was independently associated with longer survival, with particular impact in the adenocarcinoma subgroup. Moreover, a correlation was seen with CD138+ cells, but not with CD20. CD138 expression revealed a comparable association with survival. In conclusion, IGKC expression in stroma–infiltrating plasma cells is a prognostic marker in NSCLC, supporting emerging treatment concepts that exploit the humoral immune response.
  •  
7.
  • Schmidt, Marcus, et al. (author)
  • A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors
  • 2012
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 18:9, s. 2695-2703
  • Journal article (peer-reviewed)abstract
    • PURPOSE:Although the central role of the immune system for tumor prognosis is generally accepted a single robust marker is not yet available.EXPERIMENTAL DESIGN:Based on ROC (receiver operating characteristic) analyses robust markers were identified from a 60 gene B-cell derived metagene and analyzed in gene expression profiles of 1810 breast cancer, 1056 non-small cell lung cancer, 513 colorectal and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin embedded tissue of 330 breast cancer patients. The cell types were identified using immunohistochemical co-staining and confocal fluorescence microscopy.RESULTS:We identified immunoglobulin kappa C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis free survival across different molecular subtypes in node-negative breast cancer (n=965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n=845) [P less than 0.001]. In addition, IGKC gene expression was prognostic in non-small cell lung cancer and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin embedded tissues of 330 breast cancer patients. Tumor infiltrating plasma cells were identified as the source of IGKC expressionCONCLUSION:Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anti-cancer therapy. It could be validated in several independent cohorts and performed similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.
  •  
8.
  • Zhang, C., et al. (author)
  • LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer
  • 2019
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 145:4, s. 901-915
  • Journal article (peer-reviewed)abstract
    • Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high‐density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis‐free survival in node‐negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress‐induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view