SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ritz K) "

Search: WFRF:(Ritz K)

  • Result 1-50 of 126
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Abdo, A. A., et al. (author)
  • Gamma-ray emission concurrent with the nova in the symbiotic binary V407 cygni
  • 2010
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 329:5993, s. 817-821
  • Journal article (peer-reviewed)abstract
    • Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce π0 decay γ-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.
  •  
4.
  • Aharonian, F., et al. (author)
  • SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM : SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 696:2, s. L150-L155
  • Journal article (peer-reviewed)abstract
    • We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of gamma-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; > 100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (similar to 30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
  •  
5.
  • Ackermann, M., et al. (author)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
6.
  • Abdo, A. A., et al. (author)
  • A limit on the variation of the speed of light arising from quantum gravity effects
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 462:7271, s. 331-334
  • Journal article (peer-reviewed)abstract
    • A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
  •  
7.
  • Abdo, A. A., et al. (author)
  • FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 699:1, s. 31-39
  • Journal article (peer-reviewed)abstract
    • We report the discovery of high-energy (E > 100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the gamma-ray source is only approximate to 3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of approximate to 5'. The spatial distribution of gamma-ay photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F-gamma = (2.10 +/- 0.23) x 10(-7) ph (>100 MeV) cm(-2) s(-1) and Gamma = 2.17 +/- 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F-gamma < 3.72 x 10(-8) ph (>100 MeV) cm(-2) s(-1) to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.
  •  
8.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 696:2, s. 1084-1093
  • Journal article (peer-reviewed)abstract
    • The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new gamma-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E >= 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Gamma = 1.51(-0.04)(+0.05) with an exponential cutoff at E-c = 2.9 +/- 0.1 GeV. Spectral fits with generalized cutoffs of the form e(-(E/Ec)b) require b <= 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.
  •  
9.
  • Abdo, A. A., et al. (author)
  • Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 323:5922, s. 1688-1693
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.
  •  
10.
  • Abdo, A. A., et al. (author)
  • Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 726:1, s. 43-
  • Journal article (peer-reviewed)abstract
    • The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
  •  
11.
  • Abdo, A. A., et al. (author)
  • THE FIRST FERMI MULTIFREQUENCY CAMPAIGN ON BL LACERTAE : CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 730:2, s. 101-
  • Journal article (peer-reviewed)abstract
    • We report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsahovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray (RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderate and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.
  •  
12.
  • Abdo, A. A., et al. (author)
  • The spectral energy distribution of fermi bright blazars
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:1, s. 30-70
  • Journal article (peer-reviewed)abstract
    • We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.
  •  
13.
  • Archambault, S., et al. (author)
  • Deep Broadband Observations of the Distant Gamma-Ray Blazar PKS 1424+240
  • 2014
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 785:1
  • Journal article (peer-reviewed)abstract
    • We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z ≥ 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 ± 0.3) × 10–7 photons m–2 s–1 above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 ± 0.08) × 10–7 photons m–2 s–1 above 120 GeV. The measured differential very high energy (VHE; E ≥ 100 GeV) spectral indices are Γ = 3.8 ± 0.3, 4.3 ± 0.6 and 4.5 ± 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
  •  
14.
  • Dahl-Jensen, D., et al. (author)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Journal article (peer-reviewed)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
15.
  • Abdo, A. A., et al. (author)
  • A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5942, s. 848-852
  • Journal article (peer-reviewed)abstract
    • Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.
  •  
16.
  • Abdo, A. A., et al. (author)
  • Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5942, s. 840-844
  • Journal article (peer-reviewed)abstract
    • Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.
  •  
17.
  • Abdo, A. A., et al. (author)
  • DISCOVERY OF PULSATIONS FROM THE PULSAR J0205+6449 IN SNR 3C 58 WITH THE FERMI GAMMA-RAY SPACE TELESCOPE
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 699:2, s. L102-L107
  • Journal article (peer-reviewed)abstract
    • We report the discovery of gamma-ray pulsations (>= 0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the gamma-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold gamma-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 +/- 0.01 +/- 0.01 cycles which are aligned with the X-ray peaks. The first gamma-ray peak trails the radio pulse by 0.08 +/- 0.01 +/- 0.01, while its amplitude decreases with increasing energy as for the other gamma-ray pulsars. Spectral analysis of the pulsed gamma-ray emission suggests a simple power law of index -2.1 +/- 0.1 +/- 0.2 with an exponential cutoff at 3.0(-0.7)(+1.1) +/- 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral gamma-ray photon flux above 0.1 GeV is (13.7 +/- 1.4 +/- 3.0) x 10(-8) cm(-2) s(-1), which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10(34) erg s(-1) and an efficiency eta of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10(-8) cm(-2) s(-1) for off-pulse emission from the object.
  •  
18.
  • Abdo, A. A., et al. (author)
  • DISCOVERY OF PULSED gamma-RAYS FROM THE YOUNG RADIO PULSAR PSR J1028-5819 WITH THE FERMI LARGE AREA TELESCOPE
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205. ; 695:1, s. L72-L77
  • Journal article (peer-reviewed)abstract
    • Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of gamma-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The gamma-ray light curve shows two sharp peaks having phase separation of 0.460 +/- 0.004, trailing the very narrow radio pulse by 0.200 +/- 0.003 in phase, very similar to that of other known gamma-ray pulsars. The measured gamma-ray flux gives an efficiency for the pulsar of similar to 10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.
  •  
19.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST
  • 2009
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 183:1, s. 46-66
  • Journal article (peer-reviewed)abstract
    • Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than similar to 10 sigma) gamma-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) gamma-ray sources in the early mission data.
  •  
20.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG
  • 2010
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 188:2, s. 405-436
  • Journal article (peer-reviewed)abstract
    • We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
  •  
21.
  • Abdo, A. A., et al. (author)
  • FERMI OBSERVATIONS OF GRB 090902B : A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 706:1, s. L138-L144
  • Journal article (peer-reviewed)abstract
    • We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.
  •  
22.
  • Abdo, A. A., et al. (author)
  • Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 580-592
  • Journal article (peer-reviewed)abstract
    • The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.
  •  
23.
  • Abdo, A. A., et al. (author)
  • Gamma-Ray Flares from the Crab Nebula
  • 2011
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 331:6018, s. 739-742
  • Journal article (peer-reviewed)abstract
    • A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 x 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.
  •  
24.
  • Abdo, A. A., et al. (author)
  • PULSED GAMMA-RAYS FROM PSR J2021+3651 WITH THE FERMI LARGE AREA TELESCOPE
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 700:2, s. 1059-1066
  • Journal article (peer-reviewed)abstract
    • We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10(-8) cm(-2) s(-1). The photon spectrum is well described by an exponentially cut-off power law of the form dF/dE = kE(-Gamma)e((-E/Ec)), where the energy E is expressed in GeV. The photon index is Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E-c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 +/- 4 rad m(-2) but a poorly constrained magnetic geometry. Re-analysis of Chandra X-ray Observatory data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.
  •  
25.
  • Abdo, A. A., et al. (author)
  • PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 699:2, s. 1171-1177
  • Journal article (peer-reviewed)abstract
    • We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power (E) over dot = 3.5 x 10(33) erg s(-1) is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 +/- 0.01 and 0.08 +/- 0.02 wide, respectively, separated by 0.44 +/- 0.02 in phase. The first gamma-ray peak falls 0.15 +/- 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 +/- 1.05 +/- 1.35) x 10(-8) cm(-2) s(-1) with cutoff energy (1.7 +/- 0.4 +/- 0.5) GeV. Based on its parallax distance of (300 +/- 90) pc, we obtain a gamma-ray efficiency L-gamma/E similar or equal to 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.
  •  
26.
  • Abdo, A. A., et al. (author)
  • The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1
  • 2008
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 322:5905, s. 1218-1221
  • Journal article (peer-reviewed)abstract
    • Energetic young pulsars and expanding blast waves [ supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma- Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma- ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma- ray sources associated with star- forming regions and SNRs are such young pulsars.
  •  
27.
  • Abdo, A. A., et al. (author)
  • The first fermi large area telescope catalog of gamma-ray pulsars
  • 2010
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 187:2, s. 460-494
  • Journal article (peer-reviewed)abstract
    • The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.
  •  
28.
  • Abdo, A. A., et al. (author)
  • The on-orbit calibration of the Fermi Large Area Telescope
  • 2009
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 32:3-4, s. 193-219
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.
  •  
29.
  • Abdo, A. A., et al. (author)
  • THE VELA PULSAR : RESULTS FROM THE FIRST YEAR OF FERMI LAT OBSERVATIONS
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 713:1, s. 154-165
  • Journal article (peer-reviewed)abstract
    • We report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratio with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. By combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail.
  •  
30.
  • Acero, F., et al. (author)
  • Constraints on the galactic population of TeV pulsar wind nebulae using fermi large area telescope observations
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 773:1, s. 77-
  • Journal article (peer-reviewed)abstract
    • Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) gamma-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV gamma-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5. of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their gamma-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented.
  •  
31.
  • Ackermann, M., et al. (author)
  • Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6121, s. 807-811
  • Journal article (peer-reviewed)abstract
    • Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
  •  
32.
  • Ackermann, M., et al. (author)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Journal article (peer-reviewed)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
33.
  • Ackermann, M., et al. (author)
  • Fermi-LAT search for pulsar wind nebulae around gamma-ray pulsars
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 726:1, s. 35-
  • Journal article (peer-reviewed)abstract
    • The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates ((E) over dot) from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1) and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.
  •  
34.
  • Ackermann, M., et al. (author)
  • Fermi observations of GRB 090510 : A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:2, s. 1178-1190
  • Journal article (peer-reviewed)abstract
    • We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gammaray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E-peak = 3.9 +/- 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 +/- 0.03 that dominates the emission below approximate to 20 keV and above approximate to 100 MeV. The onset of the high-energy spectral component appears to be delayed by similar to 0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5(-2.6)(+5.8) GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Gamma greater than or similar to 1200, using simple.. opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the approximate to 100 keV-few MeV flux. Stricter high confidence estimates imply Gamma greater than or similar to 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
  •  
35.
  • Ackermann, M., et al. (author)
  • Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope gamma-Ray Observations of Earth's Limb
  • 2014
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:15, s. 151103-
  • Journal article (peer-reviewed)abstract
    • Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the gamma-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range similar to 90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 +/- 0.04 and 2.61 +/- 0.08 above similar to 200 GeV, respectively.
  •  
36.
  • Ackermann, M., et al. (author)
  • Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope
  • 2010
  • In: PHYS REV D. - 1550-7998. ; 82:9, s. 092003-
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 x 10(6) cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from similar to 10 degrees up to 90 degrees, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from similar to 0.5% to similar to 10%.
  •  
37.
  • Atwood, W. B., et al. (author)
  • THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:2, s. 1071-1102
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.
  •  
38.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
39.
  •  
40.
  •  
41.
  • Abdo, A. A., et al. (author)
  • BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE FERMI LARGE AREA TELESCOPE ALL-SKY SURVEY
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 700:1, s. 597-622
  • Journal article (peer-reviewed)abstract
    • The first three months of sky-survey operation with the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope reveal 132 bright sources at |b| > 10 degrees with test statistic greater than 100 ( corresponding to about 10 sigma). Two methods, based on the CGRaBS, CRATES, and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known active galactic nuclei (AGNs). This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely, Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 4 blazars with unknown classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs (HBLs), sources which were previously difficult to detect in the GeV range. Another 10 lower-confidence associations are found. Only 33 of the sources, plus two at |b| < 10 degrees, were previously detected with Energetic Gamma-Ray Experiment Telescope( EGRET), probably due to variability. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N-log S distributions and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BL Lacs. The contribution of LAT blazars to the total extragalactic gamma-ray intensity is estimated.
  •  
42.
  • Abdo, A. A., et al. (author)
  • DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI
  • 2010
  • In: The Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 709:2, s. l152-L157
  • Journal article (peer-reviewed)abstract
    • We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma, respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.
  •  
43.
  • Abdo, A. A., et al. (author)
  • Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5942, s. 845-848
  • Journal article (peer-reviewed)abstract
    • We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17 sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.
  •  
44.
  • Abdo, A. A., et al. (author)
  • Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 523, s. A46-
  • Journal article (peer-reviewed)abstract
    • Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims. We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods. We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7 +/- 0.7) x 10(-8) ph cm(-2) s(-1), with additional systematic uncertainty of <= 16%. The emission is steady and from an extended source similar to 3 degrees in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions. The observed flux implies an upper limit on the average CR nuclei density in the SMC of similar to 15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size.
  •  
45.
  • Abdo, A. A., et al. (author)
  • DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259-63/LS 2883 AROUND PERIASTRON WITH FERMI
  • 2011
  • In: Astrophysical Journal Letters. - 2041-8205. ; 736:1, s. L11-
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of >= 100 MeV gamma-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to similar to 128 days after the time of periastron, t(p), on 2010 December 15. No gamma-ray emission was detected from this source when it was far from periastron. Faint gamma-ray emission appeared as the pulsar approached periastron. At similar to t(p) + 30 days, the >= 100 MeV gamma-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at similar to(1-4) x 10(-6) cm(-2) s(-1) before starting to fade at similar to t(p) + 57 days. The total gamma-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed gamma-ray-only flaring of the source.
  •  
46.
  • Abdo, A. A., et al. (author)
  • EARLY FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE QUASAR 3C 454.3
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 699:1, s. 817-823
  • Journal article (peer-reviewed)abstract
    • This is the first report of Fermi Gamma-Ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope, covering 2008 July 7-October 6, indicate strong, highly variable.-ray emission with an average flux of similar to 3 x 10 (6) photons cm(-2) s(-1), for energies > 100 MeV. The gamma-ray flux is variable, with strong, distinct, symmetrically shaped flares for which the flux increases by a factor of several on a timescale of about 3 days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair production implies relativistic beaming with Doppler factor delta > 8, consistent with the values inferred from Very Long Baseline Interferometry observations of superluminal expansion (delta similar to 25). The observed gamma-ray spectrum is not consistent with a simple power law, but instead steepens strongly above similar to 2 GeV, and is well described by a broken power law with photon indices of similar to 2.3 and similar to 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high-luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2 GeV could be due to gamma-ray absorption via photon-photon pair production on the soft X-ray photon field of the host active galactic nucleus, but such an interpretation would require the dissipation region to be located very close (less than or similar to 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.
  •  
47.
  • Abdo, A. A., et al. (author)
  • Fermi Gamma-Ray Imaging of a Radio Galaxy
  • 2010
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 328:5979, s. 725-729
  • Journal article (peer-reviewed)abstract
    • The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.
  •  
48.
  • Abdo, A. A., et al. (author)
  • FERMI Large Area Telescope and multi-wavelength observations of the flaring activity of PKS 1510-089 between 2008 september and 2009 june
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 721:2, s. 1425-1447
  • Journal article (peer-reviewed)abstract
    • We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and gamma-ray bands, on timescales down to 6-12 hr. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was similar or equal to 2 x 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The. -ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The. -ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of similar or equal to 5.4 x 10(8)M(circle dot) and an accretion rate of similar or equal to 0.5M(circle dot) yr(-1). Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful gamma-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/ UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.
  •  
49.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM A RELATIVISTIC JET IN THE NARROW-LINE QUASAR PMN J0948+0022
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 699:2, s. 976-984
  • Journal article (peer-reviewed)abstract
    • We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy. gamma-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow H beta (FWHM(H beta) similar to 1500 km s(-1)), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and gamma-ray observations are presented. Both radio and gamma-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.
  •  
50.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM THE FLAT-SPECTRUM RADIO QUASAR PKS 1454-354
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:1, s. 934-941
  • Journal article (peer-reviewed)abstract
    • We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy gamma-ray (GeV) emission from the flat-spectrum radio quasar PKS 1454-354 (z = 1.424). On 2008 September 4, the source rose to a peak flux of (3.5 +/- 0.7) x 10(-6) ph cm(-2) s(-1) (E > 100 MeV) on a timescale of hours and then slowly dropped over the following 2 days. No significant spectral changes occurred during the flare. Fermi/LAT observations also showed that PKS 1454-354 is the most probable counterpart of the unidentified EGRET source 3EG J1500-3509. Multiwavelength measurements performed during the following days (7 September with Swift; 6-7 September with the ground-based optical telescope Automated Telescope for Optical Monitoring; 13 September with the Australia Telescope Compact Array) resulted in radio, optical, UV, and X-ray fluxes greater than archival data, confirming the activity of PKS 1454-354.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 126
Type of publication
journal article (126)
Type of content
peer-reviewed (125)
other academic/artistic (1)
Author/Editor
Bellazzini, R. (108)
Cameron, R. A. (108)
Ciprini, S. (108)
Loparco, F. (108)
Michelson, P. F. (108)
Morselli, A. (108)
show more...
Nuss, E. (108)
Piron, F. (108)
Kuss, M. (108)
Ritz, S. (108)
Longo, F. (107)
Favuzzi, C. (107)
Fusco, P. (107)
Gargano, F. (107)
Giglietto, N. (107)
Guiriec, S. (107)
Mazziotta, M. N. (107)
Raino, S. (107)
Spinelli, P. (107)
Bastieri, D. (107)
Cohen-Tanugi, J. (106)
Giordano, F. (106)
Lubrano, P. (106)
Mizuno, T. (106)
Sgrò, C. (106)
Ohsugi, T. (105)
de Palma, F. (105)
Barbiellini, G. (105)
Bruel, P. (105)
Caliandro, G. A. (105)
Grenier, I. A. (105)
Murgia, S. (105)
Bregeon, J. (104)
Caraveo, P. A. (104)
Chiang, J. (104)
Lovellette, M. N. (104)
Drell, P. S. (104)
Tibaldo, L. (103)
Baldini, L. (103)
Takahashi, H. (103)
Reimer, O. (102)
Cecchi, C. (102)
Fukazawa, Y. (102)
Claus, R. (102)
Moskalenko, I. V. (102)
Reimer, A. (101)
Orlando, E. (101)
Pesce-Rollins, M. (101)
Thayer, J. B. (101)
Latronico, L. (101)
show less...
University
Stockholm University (92)
Royal Institute of Technology (77)
Linnaeus University (36)
Lund University (12)
Uppsala University (7)
Karolinska Institutet (6)
show more...
University of Gothenburg (2)
Chalmers University of Technology (2)
Umeå University (1)
show less...
Language
English (126)
Research subject (UKÄ/SCB)
Natural sciences (107)
Medical and Health Sciences (10)
Engineering and Technology (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view