SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rollig M.) "

Search: WFRF:(Rollig M.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kramer, C., et al. (author)
  • PACS and SPIRE photometer maps of M33: First results of the HERschel M33 Extended Survey (HERM33ES)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L67
  • Journal article (peer-reviewed)abstract
    • Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
  •  
3.
  • Chown, Ryan, et al. (author)
  • PDRs4All: IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs. Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here. Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy. Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.
  •  
4.
  • Habart, Emilie, et al. (author)
  • PDRs4All II. JWST’s NIR and MIR imaging view of the Orion Nebula
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over ∼150′′ and 42′′ in key gas phase lines (e.g., Pa α, Br α, [FeII] 1.64 µm, H2 1–0 S(1) 2.12 µm, 0–0 S(9) 4.69 µm), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3–3.4 µm, 7.7, and 11.3 µm), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of ∼0.1–1′′ (∼0.0002–0.002 pc or ∼40–400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H0/H2 DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D “terraced” geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
  •  
5.
  • Peeters, Els, et al. (author)
  • PDRs4All: III. JWST's NIR spectroscopic view of the Orion Bar
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. JWST has taken the sharpest and most sensitive infrared (IR) spectral imaging observations ever of the Orion Bar photodis-sociation region (PDR), which is part of the nearest massive star-forming region the Orion Nebula, and often considered to be the 'prototypical'strongly illuminated PDR. Aims. We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the H II region to the atomic PDR -crossing the ionisation front (IF) -, and the subsequent transition to the molecular PDR -crossing the dissociation front (DF). Given the prevalence of PDRs in the interstellar medium and their dominant contribution to IR radiation, understanding the response of the PDR gas to far-ultraviolet (FUV) photons and the associated physical and chemical processes is fundamental to our understanding of star and planet formation and for the interpretation of any unresolved PDR as seen by JWST. Methods. We used high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science programme. We constructed a 3″ × 25″ spatio-spectral mosaic covering 0.97-5.27 μm at a spectral resolution R of ~2700 and an angular resolution of 0.075″-0.173″. To study the properties of key regions captured in this mosaic, we extracted five template spectra in apertures centred on the three H2 dissociation fronts, the atomic PDR, and the H II region. This wealth of detailed spatial-spectral information was analysed in terms of variations in the physical conditions-incident UV field, density, and temperature -of the PDR gas. Results. The NIRSpec data reveal a forest of lines including, but not limited to, He I, H I, and C I recombination lines; ionic lines (e.g. Fe III and Fe II); O I and N I fluorescence lines; aromatic infrared bands (AIBs, including aromatic CH, aliphatic CH, and their CD counterparts); pure rotational and ro-vibrational lines from H2; and ro-vibrational lines from HD, CO, and CH+, with most of them having been detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. In addition, we observed numerous smaller-scale structures whose typical size decreases with distance from θ1 Ori C and IR lines from C I, if solely arising from radiative recombination and cascade, reveal very high gas temperatures (a few 1000 K) consistent with the hot irradiated surface of small-scale dense clumps inside the PDR. The morphology of the Bar, in particular that of the H2 lines, reveals multiple prominent filaments that exhibit different characteristics. This leaves the impression of a 'terraced'transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. We attribute the different characteristics of the H2 filaments to their varying depth into the PDR and, in some cases, not reaching the C+/C/CO transition. These observations thus reveal what local conditions are required to drive the physical and chemical processes needed to explain the different characteristics of the DFs and the photochemical evolution of the AIB carriers. Conclusions. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star and planet formation as well as galaxy evolution.
  •  
6.
  • Berné, O., et al. (author)
  • Formation of the methyl cation by photochemistry in a protoplanetary disk
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 621:7977, s. 56-59
  • Journal article (peer-reviewed)abstract
    • Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1–3), but so far it has not been observed outside the Solar System 4,5. Alternative routes involving processes on grain surfaces have been invoked 6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.
  •  
7.
  • Kramer, C., et al. (author)
  • Gas and dust cooling along the major axis of M33 (HerM33es) ISO/LWS C II observations
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 553
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to better understand the heating of gas by observing the prominent gas cooling line [C II] at 158 mu m in the low-metallicity environment of the Local Group spiral galaxy M33 on scales of 280 pc. In particular, we describe the variation of the photoelectric heating efficiency with the galactic environment.Methods. In this study, we present [C II] observations along the major axis of M33 using the Infrared Space Observatory in combination with Herschel continuum maps, IRAM 30m CO 2-1, and VLA H I data to study the variation in velocity integrated intensities. The ratio of [C II] emission over the far-infrared continuum is used as a proxy for the heating efficiency, and models of photon-dominated regions are used to study the local physical densities, far-ultraviolet radiation fields, and average column densities of the molecular clouds.Results. The heating efficiency stays constant at 0.8% in the inner 4.5 kpc radius of the galaxy, where it increases to reach values of similar to 3% in the outskirts at about a 6 kpc radial distance. The rise of efficiency is explained in the framework of PDR models by lowered volume densities and FUV fields for optical extinctions of only a few magnitudes at constant metallicity. For the significant fraction of Hi emission stemming from PDRs and for typical pressures found in the Galactic cold neutral medium (CNM) traced by Hi emission, the CNM contributes similar to 15% to the observed [C II] emission in the inner 2 kpc radius of M33. The CNM contribution remains largely undetermined in the south, while positions between radial distances of 2 and 7.3 kpc in the north of M33 show a contribution of similar to 40% +/- 20%.
  •  
8.
  • Berné, O., et al. (author)
  • A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk
  • 2024
  • In: Science. - 0036-8075 .- 1095-9203. ; 383:6686, s. 988-992
  • Journal article (peer-reviewed)abstract
    • Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk.
  •  
9.
  • Elyajouri, Meriem, et al. (author)
  • PDRs4All V. Modelling the dust evolution across the illuminated edge of the Orion Bar
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. Interstellar dust particles, in particular carbonaceous nano-grains (like polycyclic aromatic hydrocarbons, fullerenes, and amorphous hydrogenated carbon), are critical players for the composition, energy budget, and dynamics of the interstellar medium (ISM). The dust properties, specifically the composition and size of dust grains are not static; instead, they exhibit considerable evolution triggered by variations in local physical conditions such as the density and gas temperature within the ISM, as is the case in photon-dominated regions (PDRs). The evolution of dust and its impact on the local physical and chemical conditions is thus a key question for understanding the first stages of star formation. Aims. From the extensive spectral and imaging data of the JWST PDRs4All program, we study the emission of dust grains within the Orion Bar – a well-known, highly far-UV (FUV)-irradiated PDR situated at the intersection between cold, dense molecular clouds, and warm ionized regions. The Orion Bar because of its edge-on geometry provides an exceptional benchmark for characterizing dust evolution and the associated driving processes under varying physical conditions. Our goal is to constrain the local properties of dust by comparing its emission to models. Taking advantage of the recent JWST data, in particular the spectroscopy of dust emission, we identify new constraints on dust and further previous works of dust modelling. Methods. To characterize interstellar dust across the Orion Bar, we follow its emission as traced by JWST NIRCam (at 3.35 and 4.8 µm) and MIRI (at 7.7, 11.3, 15.0, and 25.5 µm) broad band images, along with NIRSpec and MRS spectroscopic observations. First, we constrain the minimum size and hydrogen content of carbon nano-grains from a comparison between the observed dust emission spectra and the predictions of the Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS) coupled to the numerical code DustEM. Using this dust model, we then perform 3D radiative transfer simulations of dust emission with the SOC code (Scattering with OpenCL) and compare to data obtained along well chosen profiles across the Orion Bar. Results. The JWST data allows us, for the first time, to spatially resolve the steep variation of dust emission at the illuminated edge of the Orion Bar PDR. By considering a dust model with carbonaceous nano-grains and submicronic coated silicate grains, we derive unprecedented constraints on the properties of across the Orion Bar. To explain the observed emission profiles with our simulations, we find that the nano-grains must be strongly depleted with an abundance (relative to the gas) 15 times less than in the diffuse ISM. The NIRSpec and MRS spectroscopic observations reveal variations in the hydrogenation of the carbon nano-grains. The lowest hydrogenation levels are found in the vicinity of the illuminating stars suggesting photo-processing while more hydrogenated nano-grains are found in the cold and dense molecular region, potentially indicative of larger grains.
  •  
10.
  • Gratier, P., et al. (author)
  • Molecular and atomic gas in the Local Group galaxy M 33
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 522:1
  • Journal article (peer-reviewed)abstract
    • We present high-resolution large-scale observations of the molecular and atomic gas in the Local Group galaxy M 33. The observations were carried out using the HEterodyne Receiver Array (HERA) at the 30 m IRAM telescope in the CO(2-1) line, achieving a resolution of 12 '' x 2.6 km s(-1), enabling individual giant molecular clouds (GMCs) to be resolved. The observed region is 650 square arcminutes mainly along the major axis and out to a radius of 8.5 kpc, and covers entirely the 2' x 40' radial strip observed with the HIFI and PACS Spectrometers as part of the HERM33ES Herschel key program. The achieved sensitivity in main-beam temperature is 20-50 mK at 2.6 km s(-1) velocity resolution. The CO(2-1) luminosity of the observed region is 1.7 +/- 0.1 x 10(7) K km s(-1) pc(2) and is estimated to be 2.8 +/- 0.3 x 10(7) K km s(-1) pc(2) for the entire galaxy, corresponding to H-2 masses of 1.9 x 10(8) M-circle dot and 3.3 x 10(8) M-circle dot respectively (including He), calculated with N(H-2)/ICO(1-0) twice the Galactic value due to the half-solar metallicity of M 33. The HI 21 cm VLA archive observations were reduced, and the mosaic was imaged and cleaned using the multi-scale task in the CASA software package, yielding a series of datacubes with resolutions ranging from 5 '' to 25 ''. The HI mass within a radius of 8.5 kpc is estimated to be 1.4 x 10(9) M-circle dot. The azimuthally averaged CO surface brightness decreases exponentially with a scale length of 1.9 +/- 0.1 kpc whereas the atomic gas surface density is constant at Sigma(HI) = 6 +/- 2 M-circle dot pc(-2) deprojected to face-on. For an N(H-2)/ICO(1-0) conversion factor twice that of the Milky Way, the central kiloparsec H-2 surface density is Sigma(H2) = 8.5 +/- 0.2 M-circle dot pc(-2). The star formation rate per unit molecular gas (SF efficiency, the rate of transformation of molecular gas into stars), as traced by the ratio of CO to H-alpha and FIR brightness, is constant with radius. The SFE, with a N(H-2)/ICO(1-0) factor twice galactic, appears 2-4 times greater than for large spiral galaxies. A morphological comparison of molecular and atomic gas with tracers of star formation is presented showing good agreement between these maps both in terms of peaks and holes. A few exceptions are noted. Several spectra, including those of a molecular cloud situated more than 8 kpc from the galaxy center, are presented.
  •  
11.
  • Mookerjea, B., et al. (author)
  • The Herschel M 33 extended survey (HerM33es): PACS spectroscopy of the star-forming region BCLMP 302
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 532, s. art. no. A152-
  • Journal article (peer-reviewed)abstract
    • Context. The emission line of [CII] at 158 mu m is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims. Distinguishing the relative contributions of the different ISM phases to [CII] emission is a major objective of the HerM33es program, a Herschel key project to study the ISM in the nearby spiral galaxy M 33. Methods. Using PACS, we have mapped the emission of [CII] 158 mu m, [OI] 63 mu m, and other FIR lines in a 2' x 2' region of the northern spiral arm of M 33, centered on the HII region BCLMP302. At the peak of Ha emission, we observed in addition a velocity-resolved [CII] spectrum using HIFI. We use scatterplots to compare these data with PACS 160 mu m continuum maps, and with maps of CO and HI data, at a common resolution of 12 '' or 50 pc. Maps of Ha and 24 mu m emission observed with Spitzer are used to estimate the SFR. We created maps of the [CII] and [OI] 63 mu m emission and detected [NII] 122 mu m and [NIII] 57 mu m at individual positions. Results. The [CII] line observed with HIFI is significantly broader than that of CO, and slightly blue-shifted. In addition, there is little spatial correlation between [CII] observed with PACS and CO over the mapped region. There is even less spatial correlation between [CII] and the atomic gas traced by HI. Detailed comparison of the observed intensities towards the HII region with models of photo-ionization and photon-dominated regions, confirms that a significant fraction, 20-30%, of the observed [CII] emission stems from the ionized gas and not from the molecular cloud. The gas heating efficiency, using the ratio of [CII] to the TIR as a proxy, varies between 0.07 and 1.5%, with the largest variations found outside the HII region.
  •  
12.
  • Habart, Emilie, et al. (author)
  • High-angular-resolution NIR view of the Orion Bar revealed by Keck/NIRC2
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. Nearby photo-dissociation regions (PDRs), where the gas and dust are heated by the far-ultraviolet (FUV) irradiation emitted from stars, are ideal templates with which to study the main stellar feedback processes. Aims. With this study, we aim to probe the detailed structures at the interfaces between ionized, atomic, and molecular gas in the Orion Bar. This nearby prototypical strongly irradiated PDR are among the first targets of the James Webb Space Telescope (JWST) within the framework of the PDRs4All Early Release Science program. Methods. We employed the subarcsecond resolution accessible with Keck-II NIRC2 and its adaptive optics system to obtain images of the vibrationally excited line H2 1-0 S(1) at 2.12 μm that are more detailed and complete than ever before. H2 1-0 S(1) traces the dissociation front (DF), and the [FeII] and Brγ lines, at 1.64 and 2.16 μm, respectively, trace the ionization front (IF). The former is a powerful tracer of the FUV radiation field strength and gas density distribution at the PDR edge, while the last two trace the temperature and density distribution from the ionized gas to the PDR. We obtained narrow-band filter images in these key gas line diagnostics over ∼40″ at spatial scales of ∼0.1″ (∼0.0002 pc or ∼40 AU at 414 pc). Results. The Keck/Near Infrared Camera 2 (NIRC2) observations spatially resolve a plethora of irradiated substructures such as ridges, filaments, globules, and proplyds. This portends what JWST should accomplish and how it will complement the highest resolution Atacama Large Millimeter/submillimeter Array (ALMA) maps of the molecular cloud. We observe a remarkable spatial coincidence between the H2 1-0 S(1) vibrational and HCO+ J = 4-3 rotational emission previously obtained with ALMA. This likely indicates the intimate link between these two molecular species and highlights that in high-pressure PDRs, the H/H2 and C+/C/CO transitions zones come closer than in a typical layered structure of a constant density PDR. The H/H2 dissociation front appears as a highly structured region containing substructures with a typical thickness of a few ∼10-3 pc.
  •  
13.
  • Nagy, Z., et al. (author)
  • The chemistry of ions in the Orion Bar I. - CH+, SH+, and CF+ The effect of high electron density and vibrationally excited H-2 in a warm PDR surface
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 550, s. A96-
  • Journal article (peer-reviewed)abstract
    • Context. The abundances of interstellar CH+ and SH+ are not well understood as their most likely formation channels are highly endothermic. Several mechanisms have been proposed to overcome the high activation barriers, including shocks, turbulence, and H-2 vibrational excitation. Aims. Using data from the Herschel Space Observatory, we studied the formation of ions, in particular CH+ and SH+ in a typical high UV-illumination warm and dense photon-dominated region (PDR), the Orion Bar. Methods. The HIFI instrument on board Herschel provides velocity-resolved line profiles of CH+ 1-0 and 2-1 and three hyperfine transitions of SH+ 1(2)-0(1). The PACS instrument provides information on the excitation and spatial distribution of CH+ by extending the observed CH+ transitions up to J = 6-5. We compared the observed line intensities to the predictions of radiative transfer and PDR codes. Results. All CH+, SH+, and CF+ lines analyzed in this paper are seen in emission. The widths of the CH+ 2-1 and 1-0 transitions are of similar to 5 kms(-1), significantly broader than the typical width of dense gas tracers in the Orion Bar (similar to 2-3 km s(-1)) and are comparable to the width of species that trace the interclump medium such as C+ and HF. The detected SH+ transitions are narrower compared to CH+ and have line widths of similar to 3 kms(-1), indicating that SH+ emission mainly originates in denser condensations. Non-LTE radiative transfer models show that electron collisions affect the excitation of CH+ and SH+ and that reactive collisions need to be taken into account to calculate the excitation of CH+. Comparison to PDR models shows that CH+ and SH+ are tracers of the warm surface region (A(V)
  •  
14.
  • Berne, Olivier, et al. (author)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Journal article (peer-reviewed)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view