SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Romani J) "

Search: WFRF:(Romani J)

  • Result 1-50 of 105
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Abdo, A. A., et al. (author)
  • Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 726:1, s. 43-
  • Journal article (peer-reviewed)abstract
    • The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
  •  
7.
  •  
8.
  • Abdo, A. A., et al. (author)
  • Fermi Large Area Telescope constraints on the gamma-ray opacity of the universe
  • 2010
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 723:2, s. 1082-1096
  • Journal article (peer-reviewed)abstract
    • The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.
  •  
9.
  • Abdo, A. A., et al. (author)
  • Gamma-ray emission concurrent with the nova in the symbiotic binary V407 cygni
  • 2010
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 329:5993, s. 817-821
  • Journal article (peer-reviewed)abstract
    • Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce π0 decay γ-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.
  •  
10.
  • Abdo, A. A., et al. (author)
  • The second Fermi large area telescope catalog of gamma-ray pulsars
  • 2013
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 208:2, s. 17-
  • Journal article (peer-reviewed)abstract
    • This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.
  •  
11.
  • Abdo, A. A., et al. (author)
  • The spectral energy distribution of fermi bright blazars
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:1, s. 30-70
  • Journal article (peer-reviewed)abstract
    • We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.
  •  
12.
  • Nolan, P. L., et al. (author)
  • Fermi large area telescope second source catalog
  • 2012
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:2, s. 31-
  • Journal article (peer-reviewed)abstract
    • We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.
  •  
13.
  • Atwood, W. B., et al. (author)
  • THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:2, s. 1071-1102
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.
  •  
14.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG
  • 2010
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 188:2, s. 405-436
  • Journal article (peer-reviewed)abstract
    • We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
  •  
15.
  • Abdo, A. A., et al. (author)
  • The first catalog of active galactic nuclei detected by the Fermi large area telescope
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 715:1, s. 429-457
  • Journal article (peer-reviewed)abstract
    • We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 gamma-ray sources located at high Galactic latitudes (|b| > 10 degrees) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing gamma-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as gamma-ray fluxes and photon power-law spectral indices, redshifts, gamma-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the gamma-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.
  •  
16.
  • Acero, F., et al. (author)
  • FERMI LARGE AREA TELESCOPE THIRD SOURCE CATALOG
  • 2015
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 218:2
  • Journal article (peer-reviewed)abstract
    • We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse.-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is similar to 3% at 1 GeV.
  •  
17.
  • Abdo, A. A., et al. (author)
  • Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 523, s. A46-
  • Journal article (peer-reviewed)abstract
    • Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims. We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods. We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7 +/- 0.7) x 10(-8) ph cm(-2) s(-1), with additional systematic uncertainty of <= 16%. The emission is steady and from an extended source similar to 3 degrees in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions. The observed flux implies an upper limit on the average CR nuclei density in the SMC of similar to 15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size.
  •  
18.
  • Abdo, A. A., et al. (author)
  • Fermi Gamma-Ray Imaging of a Radio Galaxy
  • 2010
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 328:5979, s. 725-729
  • Journal article (peer-reviewed)abstract
    • The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.
  •  
19.
  • Abdo, A. A., et al. (author)
  • Fermi large area telescope observation of a gamma-ray source at the position of Eta Carinae
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 723:1, s. 649-657
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected a gamma-ray source that is spatially consistent with the location of Eta Carinae. This source has been persistently bright since the beginning of the LAT survey observations (from 2008 August to 2009 July, the time interval considered here). The gamma-ray signal is detected significantly throughout the LAT energy band (i.e., up to similar to 100 GeV). The 0.1-100 GeV energy spectrum is well represented by a combination of a cutoff power-law model (<10 GeV) and a hard power-law component (>10 GeV). The total flux (>100 MeV) is 3.7(-0.1)(+0.3) x 10(-7) photons s(-1) cm(-2), with additional systematic uncertainties of 10%, and consistent with the average flux measured by AGILE. The light curve obtained by Fermi is consistent with steady emission. Our observations do not confirm the presence of a gamma-ray flare in 2008 October, as reported by Tavani et al., although we cannot exclude that a flare lasting only a few hours escaped detection by the Fermi LAT. We also do not find any evidence for gamma-ray variability that correlates with the large X-ray variability of Eta Carinae observed during 2008 December and 2009 January. We are thus not able to establish an unambiguous identification of the LAT source with Eta Carinae.
  •  
20.
  • Abdo, A. A., et al. (author)
  • The first fermi large area telescope catalog of gamma-ray pulsars
  • 2010
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 187:2, s. 460-494
  • Journal article (peer-reviewed)abstract
    • The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.
  •  
21.
  • Abdo, A. A., et al. (author)
  • The on-orbit calibration of the Fermi Large Area Telescope
  • 2009
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 32:3-4, s. 193-219
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.
  •  
22.
  • Ackermann, M., et al. (author)
  • A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 753:1, s. 83-
  • Journal article (peer-reviewed)abstract
    • The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of gamma-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit gamma rays, 630 of these sources are unassociated (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source classifications appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to probable source classes for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in similar to 80% of the sources.
  •  
23.
  • Ackermann, M., et al. (author)
  • Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV
  • 2010
  • In: PHYSICAL REVIEW D. - 1550-7998. ; 82:9, s. 092004-
  • Journal article (peer-reviewed)abstract
    • We present the results of our analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law proportional to E-3.08+/-0.05 with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.
  •  
24.
  • Ackermann, M., et al. (author)
  • FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914
  • 2016
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 823:1
  • Journal article (peer-reviewed)abstract
    • The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering similar to 1/5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within similar to 70 minutes of the trigger and thus enabled a comprehensive search for a.-ray counterpart to GW150914. The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.
  •  
25.
  • Abdo, A. A., et al. (author)
  • A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5942, s. 848-852
  • Journal article (peer-reviewed)abstract
    • Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.
  •  
26.
  • Abdo, A. A., et al. (author)
  • BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE FERMI LARGE AREA TELESCOPE ALL-SKY SURVEY
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 700:1, s. 597-622
  • Journal article (peer-reviewed)abstract
    • The first three months of sky-survey operation with the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope reveal 132 bright sources at |b| > 10 degrees with test statistic greater than 100 ( corresponding to about 10 sigma). Two methods, based on the CGRaBS, CRATES, and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known active galactic nuclei (AGNs). This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely, Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 4 blazars with unknown classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs (HBLs), sources which were previously difficult to detect in the GeV range. Another 10 lower-confidence associations are found. Only 33 of the sources, plus two at |b| < 10 degrees, were previously detected with Energetic Gamma-Ray Experiment Telescope( EGRET), probably due to variability. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N-log S distributions and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BL Lacs. The contribution of LAT blazars to the total extragalactic gamma-ray intensity is estimated.
  •  
27.
  • Abdo, A. A., et al. (author)
  • Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5942, s. 840-844
  • Journal article (peer-reviewed)abstract
    • Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.
  •  
28.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST
  • 2009
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 183:1, s. 46-66
  • Journal article (peer-reviewed)abstract
    • Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than similar to 10 sigma) gamma-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) gamma-ray sources in the early mission data.
  •  
29.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 706:2, s. 1331-1340
  • Journal article (peer-reviewed)abstract
    • We report the detection of gamma-ray pulsations (>= 0.1GeV) from PSR J2229+ 6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +/- 0.01 and 0.57 +/- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+ 6114 presents a very broad peak at phase 0.49 +/- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +/- 0.22 +/- 0.32) x 10(-7) cm(-2) s(-1) for PSR J1048-5832 and (3.77 +/- 0.22 +/- 0.44) x 10(-7) cm(-2) s(-1) for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources whichwere entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.
  •  
30.
  • Abdo, A. A., et al. (author)
  • Fermi Large Area Telescope Detection of Pulsed γ-rays from the Vela-like Pulsars PSR J1048–5832 and PSR J2229+6114
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 706:2, s. 1331-1340
  • Journal article (peer-reviewed)abstract
    • We report the detection of γ-ray pulsations (>=0.1 GeV) from PSR J2229+6114 and PSR J1048–5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the γ-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the γ-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048–5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048–5832 shows two sharp peaks at phases 0.15 ± 0.01 and 0.57 ± 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 ± 0.01. The γ-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 ± 0.22 ± 0.32) × 10–7 cm–2 s–1 for PSR J1048–5832 and (3.77 ± 0.22 ± 0.44) × 10–7 cm–2 s–1 for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048–5832 is one of the two LAT sources which were entangled together as 3EG J1048–5840. These detections add to the growing number of young γ-ray pulsars that make up the dominant population of GeV γ-ray sources in the Galactic plane.
  •  
31.
  • Abdo, A. A., et al. (author)
  • FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM A RELATIVISTIC JET IN THE NARROW-LINE QUASAR PMN J0948+0022
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 699:2, s. 976-984
  • Journal article (peer-reviewed)abstract
    • We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy. gamma-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow H beta (FWHM(H beta) similar to 1500 km s(-1)), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and gamma-ray observations are presented. Both radio and gamma-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.
  •  
32.
  • Abdo, A. A., et al. (author)
  • Fermi large area telescope observations of PSR J1836+5925
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 712:2, s. 1209-1218
  • Journal article (peer-reviewed)abstract
    • The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 10(34) erg s(-1), and a large off-peak (OP) emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.
  •  
33.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 696:2, s. 1084-1093
  • Journal article (peer-reviewed)abstract
    • The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new gamma-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E >= 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Gamma = 1.51(-0.04)(+0.05) with an exponential cutoff at E-c = 2.9 +/- 0.1 GeV. Spectral fits with generalized cutoffs of the form e(-(E/Ec)b) require b <= 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.
  •  
34.
  • Abdo, A. A., et al. (author)
  • THE VELA PULSAR : RESULTS FROM THE FIRST YEAR OF FERMI LAT OBSERVATIONS
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 713:1, s. 154-165
  • Journal article (peer-reviewed)abstract
    • We report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratio with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. By combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail.
  •  
35.
  • Ackermann, M., et al. (author)
  • THE FIRST FERMI-LAT CATALOG OF SOURCES ABOVE 10 GeV
  • 2013
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 209:2
  • Journal article (peer-reviewed)abstract
    • We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi catalog of > 10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range > 10 GeV (> 25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% +/- 8% of the isotropic. gamma-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based gamma-ray observatories.
  •  
36.
  • Abdo, A. A., et al. (author)
  • DETECTION OF THE ENERGETIC PULSAR PSR B1509-58 AND ITS PULSAR WIND NEBULA IN MSH 15-52 USING THE FERMI-LARGE AREA TELESCOPE
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 714:1, s. 927-936
  • Journal article (peer-reviewed)abstract
    • We report the detection of high-energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant G320.4-1.2 (aka MSH 15-52). Using 1 yr of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 +/- 0.01 and 0.33 +/- 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1-100 GeV energy range is well described by a power law with a spectral index of (1.57 +/- 0.17 +/- 0.13) and a flux above 1 GeV of (2.91 +/- 0.79 +/- 1.35) x 10(-9) cm(-2) s(-1). The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.
  •  
37.
  • Abdo, A. A., et al. (author)
  • Fermi Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M87
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 55-60
  • Journal article (peer-reviewed)abstract
    • We report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 (±0.63) × 10–8 photons cm–2 s–1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (<2.18 × 10–8 photons cm–2 s–1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.
  •  
38.
  • Abdo, A. A., et al. (author)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 713:1, s. 146-153
  • Journal article (peer-reviewed)abstract
    • We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degrees diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 degrees x 3 degrees area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0.degrees 88 +/- 0.degrees 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) x 10(-7) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.
  •  
39.
  • Abdo, A. A., et al. (author)
  • FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSION IN THE DIRECTION OF SUPERNOVA REMNANT W51C
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205. ; 706:1, s. L1-L6
  • Journal article (peer-reviewed)abstract
    • The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (similar to 10(4) yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10(36) erg s(-1) given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral pi mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to (n) over bar W-H(p) similar or equal to 5 x 10(51) (D/6 kpc)(2) erg cm(-3). Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.
  •  
40.
  • Abdo, A. A., et al. (author)
  • Fermi/LAT observations of LS 5039
  • 2009
  • In: Astrophysical Journal Letters. - 0571-7248 .- 2041-8205. ; 706:1, s. L56-L61
  • Journal article (peer-reviewed)abstract
    • The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 ± 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 ± 0.5(stat) ± 1.8(syst) ×10–7 photon cm–2 s–1, with a cutoff at 2.1 ± 0.3(stat) ± 1.1(syst) GeV and photon index Γ = 1.9 ± 0.1(stat) ± 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.
  •  
41.
  • Abdo, A. A., et al. (author)
  • Fermi LAT Observations of LS I +61°303 : First Detection of an Orbital Modulation in GeV Gamma Rays
  • 2009
  • In: Astrophysical Journal Letters. - 2041-8205. ; 701:2, s. L123-L128
  • Journal article (peer-reviewed)abstract
    • This Letter presents the first results from the observations of LS I +61°303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 ± 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 ± 0.03(stat) ± 0.07(syst) 10-6 ph cm-2 s-1, with a cutoff at 6.3 ± 1.1(stat) ± 0.4(syst) GeV and photon index Γ = 2.21 ± 0.04(stat) ± 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.
  •  
42.
  • Abdo, A. A., et al. (author)
  • FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:1, s. 272-283
  • Journal article (peer-reviewed)abstract
    • We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.
  •  
43.
  • Abdo, A. A., et al. (author)
  • Gamma-Ray Flares from the Crab Nebula
  • 2011
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 331:6018, s. 739-742
  • Journal article (peer-reviewed)abstract
    • A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 x 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.
  •  
44.
  • Abdo, A. A., et al. (author)
  • THE FERMI-LAT HIGH-LATITUDE SURVEY : SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:1, s. 435-453
  • Journal article (peer-reviewed)abstract
    • This is the first of a series of papers aimed at characterizing the populations detected in the high-latitude sky of the Fermi-LAT survey. In this work, we focus on the intrinsic spectral and flux properties of the source sample. We show that when selection effects are properly taken into account, Fermi sources are on average steeper than previously found (e.g., in the bright source list) with an average photon index of 2.40 +/- 0.02 over the entire 0.1-100 GeV energy band. We confirm that flat spectrum radio quasars have steeper spectra than BL Lacertae objects with an average index of 2.48 +/- 0.02 versus 2.18 +/- 0.02. Using several methods, we build the deepest source count distribution at GeV energies, deriving that the intrinsic source (i.e., blazar) surface density at F-100 >= 10(-9) ph cm(2) s(-1) is 0.12(-0.02)(+0.03) deg(-2). The integration of the source count distribution yields that point sources contribute 16(+/- 1.8)% (+/- 7% systematic uncertainty) of the GeV isotropic diffuse background. At the fluxes currently reached by LAT, we can rule out the hypothesis that pointlike sources (i.e., blazars) produce a larger fraction of the diffuse emission.
  •  
45.
  • Abdollahi, S., et al. (author)
  • Fermi Large Area Telescope Fourth Source Catalog
  • 2020
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 247:1
  • Journal article (peer-reviewed)abstract
    • We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (one-year and two-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall, 358 sources are considered as identified based on angular extent, periodicity, or correlated variability observed at other wavelengths. For 1336 sources, we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.
  •  
46.
  • Ackermann, M., et al. (author)
  • Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
  • 2012
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 335:6065, s. 189-193
  • Journal article (peer-reviewed)abstract
    • Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
  •  
47.
  • Ackermann, M., et al. (author)
  • The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope
  • 2011
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 743:2
  • Journal article (peer-reviewed)abstract
    • The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented. The second LAT AGN catalog (2LAC) includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs. However, some of these are affected by analysis issues and some are associated with multiple AGNs. Consequently, we define a Clean Sample which includes 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310 flat-spectrum radio quasars (FSRQs), 157 candidate blazars of unknown type (i.e., with broadband blazar characteristics but with no optical spectral measurement yet), 8 misaligned AGNs, 4 narrow-line Seyfert 1 (NLS1s), 10 AGNs of other types, and 2 starburst galaxies. Where possible, the blazars have been further classified based on their spectral energy distributions (SEDs) as archival radio, optical, and X-ray data permit. While almost all FSRQs have a synchrotron-peak frequency <1014 Hz, about half of the BL Lac objects have a synchrotron-peak frequency >1015 Hz. The 2LAC represents a significant improvement relative to the first LAT AGN catalog (1LAC), with 52% more associated sources. The full characterization of the newly detected sources will require more broadband data. Various properties, such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities and their correlations are presented and discussed for the different blazar classes. The general trends observed in 1LAC are confirmed.
  •  
48.
  • Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 326:5959, s. 1512-
  • Journal article (peer-reviewed)abstract
    • Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.
  •  
49.
  • Weltevrede, P., et al. (author)
  • Gamma-ray and radio properties of six pulsars detected by the Fermi large area telescope
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 708:2, s. 1426-1441
  • Journal article (peer-reviewed)abstract
    • We report the detection of pulsed gamma-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their gamma-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the gamma-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the gamma-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the gamma-ray light curves with high-energy beam models.
  •  
50.
  • Abdo, A. A., et al. (author)
  • DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI
  • 2010
  • In: The Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 709:2, s. l152-L157
  • Journal article (peer-reviewed)abstract
    • We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma, respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 105
Type of publication
journal article (103)
Type of content
peer-reviewed (102)
other academic/artistic (1)
Author/Editor
Bellazzini, R. (79)
Ciprini, S. (79)
Longo, F. (78)
Reimer, O. (78)
Barbiellini, G. (78)
Fusco, P. (78)
show more...
Guiriec, S. (78)
Loparco, F. (78)
Mizuno, T. (78)
Morselli, A. (78)
Nuss, E. (78)
Spinelli, P. (78)
Kuss, M. (78)
Reimer, A. (77)
Bruel, P. (77)
Cameron, R. A. (77)
Caraveo, P. A. (77)
Giglietto, N. (77)
Lubrano, P. (77)
Mazziotta, M. N. (77)
Piron, F. (77)
Raino, S. (77)
Bastieri, D. (77)
Grenier, I. A. (77)
Sgrò, C. (77)
Ohsugi, T. (76)
Torres, D. F. (76)
Bregeon, J. (76)
Baldini, L. (76)
Cohen-Tanugi, J. (76)
Favuzzi, C. (76)
Gargano, F. (76)
Michelson, P. F. (76)
Porter, T. A. (76)
Ballet, J. (76)
Drell, P. S. (76)
Ackermann, M. (75)
de Palma, F. (75)
Caliandro, G. A. (75)
Chiang, J. (75)
Giordano, F. (75)
Pesce-Rollins, M. (75)
Murgia, S. (75)
Johannesson, G. (74)
Lovellette, M. N. (74)
Orlando, E. (74)
Thayer, J. B. (74)
Latronico, L. (74)
Moskalenko, I. V. (74)
Spandre, G. (74)
show less...
University
Stockholm University (65)
Royal Institute of Technology (57)
Linnaeus University (23)
Karolinska Institutet (12)
Uppsala University (9)
Umeå University (7)
show more...
Lund University (5)
Linköping University (2)
Swedish University of Agricultural Sciences (2)
University of Gothenburg (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (105)
Research subject (UKÄ/SCB)
Natural sciences (85)
Medical and Health Sciences (8)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view