SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rydberg Niklas) "

Search: WFRF:(Rydberg Niklas)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alvfors, Per, 1954-, et al. (author)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples : Improvement potential discussed in the context of Well-to-Tank analyses
  • 2010
  • Reports (other academic/artistic)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use. Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.
  •  
2.
  • Alvfors, Per, et al. (author)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples
  • 2010
  • Reports (other academic/artistic)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use.Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier. Three important results from the lignocellulosic ethanol study are: (i) the production systems could be far more complex and intelligently designed than previous studies show, (ii) the potential improvements consist of a large number of combinations of process integration options wich partly depends on specific local conditions, (iii) the environmental performance of individual systems may vary significantly due to systems design and local conditons.From the case study on gasification of solid biomass for the production of biomethane we find that one of the main advantages of this technology is its high efficiency in respect to converting biomass into fuels for transport. For future research we see a need for improvements within the gas up-grading section, including gas cleaning and gas conditioning, to obtain a more efficient process. A major challenge is to remove the tar before the methanation reaction. Three important results from the biomethane study are: (i) it is important not to crack the methane already produced in the syngas, which indicates a need for improved catalysts for selective tar cracking, (ii) there is a need for new gas separation techniques to facilitate the use of air oxidation agent instead of oxygen in the gasifier, and (iii) there is a need for testing the integrated process under realistic conditions, both at atmospheric and pressurized conditions. From the case study on black liquor gasification for the production of DME we find that the process has many advantages compared to other biofuel production options, such as the fact that black liquor is already partially processed and exists in a pumpable, liquid form, and that the process is pressurised and tightly integrated with the pulp mill, which enhances fuel production efficiency. However, to achieve commercial status, some challenges still remain, such as demonstrating that materials and plant equipment meet the high availability required when scaling up to industrial size in the pulp mill, and also proving that the plant can operate according to calculated heat and material balances. Three important results from the DME study are: (i) that modern chemical pulp mills, having a potential surplus of energy, could become important suppliers of renewable fuels for transport, (ii) there is a need to demonstrate that renewable DME/methanol will be proven to function in large scale, and (iii) there is still potential for technology improvements and enhanced energy integration. Although quantitative improvement potentials are given in the three biofuel production cases, it is not obvious how these potentials would affect WTT values, since the biofuel production processes are complex and changing one parameter impacts other parameters. The improvement potentials are therefore discussed qualitatively. From the entire study we have come to agree on the following common conclusions: (i) research and development in Sweden within the three studied 2G biofuel production technologies is extensive, (ii) in general, the processes, within the three cases, work well at pilot and demonstration scale and are now in a phase to be proven in large scale, (iii) there is still room for improvement although some processes have been known for decades, (iv) the biofuel production processes are complex and site specific and process improvements need to be seen and judged from a broad systems perspective (both within the production plant as well as in the entire well-to-tank perspective), and (v) the three studied biofuel production systems are complementary technologies. Futher, the process of conducting this study is worth mentioning as a result itself, i.e. that many different actors within the field have proven their ability and willingness to contribute to a common report, and that the cooperation climate was very positive and bodes well for possible future collaboration within the framework of the f3 center. Finally, judging from the political ambitions it is clear that the demand for renewable fuels will significantly increase during the coming decade. This will most likely result in opportunities for a range of biofuel options. The studied biofuel options all represent 2G biofuels and they can all be part of the solution to meet the increased renewable fuel demand.
  •  
3.
  • Alvors, Per, et al. (author)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples : Improvement potential discussed in the context of Well-to-Tank analyses
  • 2010
  • Reports (other academic/artistic)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use.Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology.In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study.We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose.From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.Three important results from the lignocellulosic ethanol study are: (i) the production systems could be far more complex and intelligently designed than previous studies show, (ii) the potential improvements consist of a large number of combinations of process integration options wich partly depends on specific local conditions, (iii) the environmental performance of individual systems may vary significantly due to systems design and local conditons.From the case study on gasification of solid biomass for the production of biomethane we find that one of the main advantages of this technology is its high efficiency in respect to converting biomass into fuels for transport. For future research we see a need for improvements within the gas up-grading section, including gas cleaning and gas conditioning, to obtain a more efficient process. A major challenge is to remove the tar before the methanation reaction.Three important results from the biomethane study are: (i) it is important not to crack the methane already produced in the syngas, which indicates a need for improved catalysts for selective tar cracking, (ii) there is a need for new gas separation techniques to facilitate the use of air oxidation agent instead of oxygen in the gasifier, and (iii) there is a need for testing the integrated process under realistic conditions, both at atmospheric and pressurized conditions.From the case study on black liquor gasification for the production of DME we find that the process has many advantages compared to other biofuel production options, such as the fact that black liquor is already partially processed and exists in a pumpable, liquid form, and that the process is pressurised and tightly integrated with the pulp mill, which enhances fuel production efficiency. However, to achieve commercial status, some challenges still remain, such as demonstrating that materials and plant equipment meet the high availability required when scaling up to industrial size in the pulp mill, and also proving that the plant can operate according to calculated heat and material balances. Three important results from the DME study are: (i) that modern chemical pulp mills, having a potential surplus of energy, could become important suppliers of renewable fuels for transport, (ii) there is a need to demonstrate that renewable DME/methanol will be proven to function in large scale, and (iii) there is still potential for technology improvements and enhanced energy integration.Although quantitative improvement potentials are given in the three biofuel production cases, it is not obvious how these potentials would affect WTT values, since the biofuel production processes are complex and changing one parameter impacts other parameters. The improvement potentials are therefore discussed qualitatively. From the entire study we have come to agree on the following common conclusions: (i) research and development in Sweden within the three studied 2G biofuel production technologies is extensive, (ii) in general, the processes, within the three cases, work well at pilot and demonstration scale and are now in a phase to be proven in large scale, (iii) there is still room for improvement although some processes have been known for decades, (iv) the biofuel production processes are complex and site specific and process improvements need to be seen and judged from a broad systems perspective (both within the production plant as well as in the entire well-to-tank perspective), and (v) the three studied biofuel production systems are complementary technologies. Futher, the process of conducting this study is worth mentioning as a result itself, i.e. that many different actors within the field have proven their ability and willingness to contribute to a common report, and that the cooperation climate was very positive and bodes well for possible future collaboration within the framework of the f3 center.Finally, judging from the political ambitions it is clear that the demand for renewable fuels will significantly increase during the coming decade. This will most likely result in opportunities for a range of biofuel options. The studied biofuel options all represent 2G biofuels and they can all be part of the solution to meet the increased renewable fuel demand.
  •  
4.
  •  
5.
  • Goryashko, Vitaliy, 1982-, et al. (author)
  • Proposal for Design and Test of a 352 MHz Spoke RF Source
  • 2012
  • Reports (other academic/artistic)abstract
    • More than a dozen of spoke resonators prototypes (SSR, DSR, TSR) have been constructed and tested worldwide. None have accelerated beam until now and the ESS LINAC will be the first accelerator to operate with spoke cavities. Experience with other types of superconducting cavities indicates that high-power test is vital for reliable operation of the cavity in an accelerator. Although characteristics of a bare cavity can be obtained in a low-power test some important features of a `dressed' cavity like the electroacoustic stability and tuning system can be studied only in a high-power test stand. The ESS LINAC is a pulsed machine and the Lorentz detuning originating from the electromagnetic pressure on the cavity walls is expected to be strong. The Lorentz force along with the cavity sensitivity to mechanical excitations at some resonant frequencies may lead to self-sustained mechanical vibrations which make cavity operation dicult. Practical experience shows that increasing the boundary stiness will decrease the static Lorentz force detuning but not necessarily the dynamic one. Therefore, the FREIA group at Uppsala University is building a high-power test stand able to study performance of the ESS spoke cavity at high power. The RF test stand will be able to drive the cavity not only in the self-excitation mode but also with closed RF loop and fixed frequency. The later technique will be used to reproduce the shape of the cavity voltage pulse as it is expected to be in the cavity operating in the ESS LINAC such that the cavity tuning compensation system will be tested under realistic conditions.
  •  
6.
  • Hebelka, Hanna, 1977, et al. (author)
  • Axial Loading during MRI Induces Lumbar Foraminal Area Changes and Has the Potential to Improve Diagnostics of Nerve Root Compromise
  • 2022
  • In: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 11:8
  • Journal article (peer-reviewed)abstract
    • Lumbar foraminal stenosis is a common cause of lumbar radiculopathy and conventionally assessed with magnetic resonance imaging (MRI) in supine-positioned patients. An MRI acquired during spine loading may unmask pathology not otherwise revealed in a relaxed position. Therefore, we investigated how spine loading during MRI affects lumbar foramina. In 89 low-back pain patients’ lumbar, MRIs were performed in a relaxed supine position and during axial loading using a Dynawell® compression device. The smallest area of all intervertebral foramina at levels L3/L4–L5/S1 (534 foramina) was determined using a freehand polygonal tool in parasagittal T2-weighted sequences. The grading system described by Lee et al. was also used to qualitatively assess foraminal stenosis. Overall, a mean reduction of 2.2% (mean −0.89 cm2 and −0.87 cm2, respectively) was observed (p = 0.002), however for individual foramina large variations, with up to about 50% increase or decrease, were seen. Stratified for lumbar level, an area reduction was found for L3/L4 and L4/L5 foramina (mean change −0.03 cm2; p = 0.036; and −0.03 cm2; p = 0.004, respectively) but not for L5/S1. When comparing the measured area changes to qualitative foraminal grading, 22% of the foramina with a measured area decrease were evaluated with a higher grading. Thus, detailed information on foraminal appearance and nerve root affection can be obtained using this method.
  •  
7.
  •  
8.
  • Holmberg, Max, et al. (author)
  • On Surface Losses in Direct Metal Laser Sintering Printed Millimeter and Submillimeter Waveguides
  • 2018
  • In: Journal of Infrared, Millimeter and Terahertz Waves. - : SPRINGER. - 1866-6892 .- 1866-6906. ; 39:6, s. 535-545
  • Journal article (peer-reviewed)abstract
    • Different lengths of WR3 (220-330 GHz) and WR10 (75-110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.
  •  
9.
  • Häggström, Jens, et al. (author)
  • Testing Bridges to Failure : Experiences
  • 2017
  • In: IABSE Symposium, Vancouver, 2017. - Zürich, Switzerland : IABSE - International Association for Bridges and Structural Engineering. - 9783857481536 ; , s. 2832-2839
  • Conference paper (peer-reviewed)abstract
    • Four bridges of different types have been tested to failure and the results have been compared to the load-carrying capacity calculated using standard code models and advanced numerical methods. The results may help to make accurate assessments of similar existing bridges. Here it is necessary to know the real behaviour, weak points, and to be able to model the load-carrying capacity in a correct way.The four bridges were: (1) a one span steel truss railway bridge; (2) a two span strengthened concrete trough railway bridge; (3) a one span concrete trough bridge tested in fatigue; and (4) a five span prestressed concrete road bridge.The unique results in the paper are the experiences of the real failure types, the robustness/weakness of the bridges, and the accuracy of different codes and models.
  •  
10.
  • Mehmeti-Ajradini, Meliha, et al. (author)
  • Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer
  • 2020
  • In: Life Science Alliance. - 2575-1077. ; 3:11
  • Journal article (peer-reviewed)abstract
    • Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients cotransplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
  •  
11.
  • Mehmeti-Ajradini, Meliha, et al. (author)
  • Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer
  • 2020
  • In: Life Science Alliance. - : LIFE SCIENCE ALLIANCE LLC. - 2575-1077. ; 3:11
  • Journal article (peer-reviewed)abstract
    • Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11
Type of publication
reports (5)
journal article (4)
conference paper (2)
Type of content
other academic/artistic (6)
peer-reviewed (5)
Author/Editor
Dancila, Dragos (3)
Stålbrand, Henrik (3)
Kusar, Henrik (3)
Björnsson, Lovisa (3)
Rydberg, Anders (3)
Wetterlund, Elisabet ... (3)
show more...
Sjöström, Krister (3)
Zacchi, Guido (3)
Wallberg, Ola (3)
Arnell, Jenny (3)
Hoffstedt, Christian (3)
Klintbom, Patrik (3)
Magnusson, Mimmi (3)
Larsson, Anna Maria (2)
Rydén, Lisa (2)
Bexell, Daniel (2)
Andersson, Joakim (2)
Lidén, Gunnar (2)
Riesbeck, Kristian (2)
Hjörvarsson, Björgvi ... (2)
Killander, Fredrika (2)
Carneiro, Ana (2)
Ahl, Jonas (2)
Börjesson, Pål (2)
Pettersson, Karin (2)
Harvey, Simon (2)
Rydberg, Tomas (2)
Bergenfelz, Caroline (2)
Leandersson, Karin (2)
Berglin, Niklas (2)
Grahn, Maria (2)
Holmgren, Kristina (2)
Jelse, Kristian (2)
Ekelöf, Tord (1)
Brisby, Helena, 1965 (1)
Rydberg, Anna (1)
Harvey, Simon, 1965 (1)
Ruber, Roger (1)
Ziemann, Volker (1)
Adolfsson, Jörgen (1)
Grahn, Maria, 1963 (1)
Adolfsson, Niklas (1)
Lagerstrand, Kerstin ... (1)
Sas, Gabriel (1)
Häggström, Jens (1)
Rydberg, Tomas, 1962 (1)
Djodjic, Faruk (1)
Lidén, Gunnar, 1961 (1)
Alvfors, Per (1)
Alvfors, Per, 1954- (1)
show less...
University
Uppsala University (3)
Linköping University (2)
Lund University (2)
University of Gothenburg (1)
Royal Institute of Technology (1)
Luleå University of Technology (1)
show more...
Chalmers University of Technology (1)
RISE (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (10)
Swedish (1)
Research subject (UKÄ/SCB)
Engineering and Technology (6)
Natural sciences (3)
Medical and Health Sciences (3)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view