SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Saada Ann) "

Search: WFRF:(Saada Ann)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ezer, Shlomit, et al. (author)
  • Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity
  • 2022
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 145:3, s. 872-878
  • Journal article (peer-reviewed)abstract
    • Pathogenic variants in SOD1, encoding superoxide dismutase 1, are responsible for about 20% of all familial amyotrophic lateral sclerosis cases, through a gain-of-function mechanism. Recently, two reports showed that a specific homozygous SOD1 loss-of-function variant is associated with an infantile progressive motor-neurological syndrome. Exome sequencing followed by molecular studies, including cDNA analysis, SOD1 protein levels and enzymatic activity, and plasma neurofilament light chain levels, were undertaken in an infant with severe global developmental delay, axial hypotonia and limb spasticity. We identified a homozygous 3-bp in-frame deletion in SOD1. cDNA analysis predicted the loss of a single valine residue from a tandem pair (p.Val119/Val120) in the wild-type protein, yet expression levels and splicing were preserved. Analysis of SOD1 activity and protein levels in erythrocyte lysates showed essentially no enzymatic activity and undetectable SOD1 protein in the child, whereas the parents had ∼50% protein expression and activity relative to controls. Neurofilament light chain levels in plasma were elevated, implying ongoing axonal injury and neurodegeneration. Thus, we provide confirmatory evidence of a second biallelic variant in an infant with a severe neurological syndrome and suggest that the in-frame deletion causes instability and subsequent degeneration of SOD1. We highlight the importance of the valine residues at positions V119-120, and suggest possible implications for future therapeutics research.
  •  
2.
  • Spiegel, Konen, et al. (author)
  • Infantile Cerebellar-Retinal Degeneration Associated with a Mutation in Mitochondrial Aconitase, ACO2
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:3, s. 518-523
  • Journal article (peer-reviewed)abstract
    • Degeneration of the cerebrum, cerebellum, and retina in infancy is part of the clinical spectrum of lysosomal storage disorders, mitochondrial respiratory chain defects, carbohydrate glycosylation defects, and infantile neuroaxonal dystrophy. We studied eight individuals from two unrelated families who presented at 2-6 months of age with truncal hypotonia and athetosis, seizure disorder, and ophthalmologic abnormalities. Their course was characterized by failure to acquire developmental milestones and culminated in profound psychomotor retardation and progressive visual loss, including optic nerve and retinal atrophy. Despite their debilitating state, the disease was compatible with survival of up to 18 years. Laboratory investigations were normal, but the oxidation of glutamate by muscle mitochondria was slightly reduced. Serial brain MRI displayed progressive, prominent cerebellar atrophy accompanied by thinning of the corpus callosum, dysmyelination, and frontal and temporal cortical atrophy. Homozygosity mapping followed by whole-exome sequencing disclosed a Ser112Arg mutation in ACO2, encoding mitochondrial aconitase, a component of the Krebs cycle. Specific aconitase activity in the individuals' lymphoblasts was severely reduced. Under restrictive conditions, the mutant human ACO2 failed to complement a yeast ACO1 deletion strain, whereas the wild-type human ACO2 succeeded, indicating that this mutation is pathogenic. Thus, a defect in mitochondrial aconitase is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. In the absence of noninvasive biomarkers, determination of the ACO2 sequence or of aconitase activity in lymphoblasts are warranted in similarly affected individuals, based on clinical and neuroradiologic grounds.
  •  
3.
  • Spiegel, Ronen, et al. (author)
  • Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy
  • 2014
  • In: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 22:7, s. 902-906
  • Journal article (peer-reviewed)abstract
    • Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A > T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view