SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Saper R) "

Search: WFRF:(Saper R)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bayley, PJ, et al. (author)
  • 2013 SYR Accepted Poster Abstracts
  • 2013
  • In: International journal of yoga therapy. - 1531-2054. ; 23:1, s. 32-53
  • Journal article (peer-reviewed)
  •  
3.
  • Fritz, Michael, et al. (author)
  • Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice
  • 2016
  • In: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 126:2, s. 695-705
  • Journal article (peer-reviewed)abstract
    • Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type-specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E-2 (PGE(2)) synthesis. Further, we showed that inflammation-induced PGE(2) targeted EP1 receptors on striatal dopamine D1 receptor-expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE(2)-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation.
  •  
4.
  • Raizen, David M., et al. (author)
  • Beyond the symptom : the biology of fatigue
  • 2023
  • In: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 46:9
  • Journal article (peer-reviewed)abstract
    • A workshop titled “Beyond the Symptom: The Biology of Fatigue” was held virtually September 27–28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue.The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view