SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sarma Bipul) "

Search: WFRF:(Sarma Bipul)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gowda, Vasantha, 1986-, et al. (author)
  • Bi(III) Complexes Containing Dithiocarbamate Ligands: Synthesis, Structure Elucidation by X‐ray Diffraction, Solid‐State 13C/15N NMR, and DFT Calculations
  • 2020
  • In: ChemistrySelect. - : John Wiley & Sons. - 2365-6549. ; 5:29, s. 8882-8891
  • Journal article (peer-reviewed)abstract
    • We report on syntheses, characterisation by nuclear magnetic resonance (NMR) spectroscopy, X‐ray diffraction (XRD) measurements, and density functional theory (DFT) calculations of electronic/molecular structure and NMR chemical shifts of complexes of Bi(III), having the molecular formulae: [Bi{S2CN(C2H5)2)}3] (1), [Bi{S2CN(C2H5)2)}2(C12H8N2)NO3)] (2), and [Bi2{S2CN(CH2)5}6 H2O] (3). The powder XRD patterns of complexes (1) and (2) resembled the corresponding calculated powder XRD patterns for previously reported single crystal structures. Single crystal XRD structure of complex (3), reported in this work, adopted an orthorhombic system with a space group Pbca with a=10.9956(3) Å, b=27.7733(8) Å, c=35.1229(10) Å and α=β=γ=90°. The experimental solid‐state 13C/15N NMR data of the complexes (1)‐(3) were in accord with their X‐ray single crystal structures. The unit cell of the complex (3) shows a weak supramolecular Bi S interaction leading to the formation of a non‐centrosymmetric binuclear molecule [Bi2{S2CN(CH2)5}6 H2O], which displays structural inequivalence in both 13C/15N NMR, and XRD data. Assignments of resonance lines in solid‐state 13C/15N NMR spectra of complexes (1)‐(3) were assisted by chemical shift calculations using periodic DFT methods. The findings of the present multidisciplinary approach will contribute in designing molecular models and further understanding of the structures and properties of (diamagnetic) metal complexes, including heavy metal ones.
  •  
2.
  • Gowda, Vasantha, et al. (author)
  • Structural insights into the polymorphism of bismuth(III) di-n-butyldithiocarbamate by X-ray diffraction, solid-state (13C/15N) CP-MAS NMR and DFT calculations
  • 2017
  • In: Polyhedron. - : Elsevier. - 0277-5387 .- 1873-3719. ; 129, s. 123-132
  • Journal article (peer-reviewed)abstract
    • Two crystalline polymorphs of a binuclear tris(di-n-butyldithiocarbamato)bismuth(III) complex, I and II, with an empirical formula of [Bi{S2CN(n-C4H9)2}3] were synthesised and characterised by X-ray diffraction (XRD), solid-state NMR and density functional theory (DFT) calculations. At the supramolecular level, these mononuclear molecular units interact in pairs via secondary Bi⋯S bonds, yielding binuclear formations of [Bi2{S2CN(n-C4H9)2}6]. The polymorph I () contains two isomeric non-centrosymmetric binuclear molecules of [Bi2{S2CN(n-C4H9)2}6], which are related to each other as conformers, therefore having four structurally inequivalent bismuth atoms and twelve inequivalent dithiocarbamate ligands. In contrast, the structurally simpler polymorph II (P21/n) exists as a single molecular form of the corresponding centrosymmetric binuclear formation, comprising two structurally equivalent bismuth atoms and three structurally different dithiocarbamate groups. The polymorphs I and II were found to be interconvertible by altering the solvent system during the recrystallisation process. Sun et al. (2012) has reported a crystalline form of the title compound which resembles, but is not identical with, polymorph II. Experimental solid-state 13C and 15N cross-polarisation (CP) magic-angle-spinning (MAS) NMR spectra of both polymorphs I and II were in accord with the direct structural data on these complexes. Assignments of the resonance lines in the solid-state 13C and 15N NMR spectra were assisted by chemical shift calculations of the crystals using periodic DFT.
  •  
3.
  • Gowda, Vasantha, et al. (author)
  • Structure Elucidation of an Yttrium Diethyldithiocarbamato-Phenanthroline Complex by X-ray Crystallography, Solid-State NMR, and ab-initio Quantum Chemical Calculations
  • 2016
  • In: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; 20, s. 3278-3291
  • Journal article (peer-reviewed)abstract
    • We present a structural analysis method for molecular and electronic structure of yttrium diethyldithiocarbamato-phenanthroline complex {[Y(S2CNR2)3PHEN] with R = C2H5 and PHEN = 1,10-phenanthroline} combining solid-state NMR spectroscopy, XRD, and first principles DFT calculations. Replacing the Nd3+ ion with Y3+ in the reported crystal structure of [Nd(S2CNR2)3PHEN] complex generated an approximate 3D structure of the title complex. The structure was then subjected to first principles quantum chemical geometry optimisation using periodic DFT method. The quality of the method is discussed by comparing predicted and experimental powder XRD patterns. Full assignment of 13C and 15N solid-state CP-MAS NMR spectra as well as analyses of the principal values of the chemical shift tensors were carried out using periodic scalar relativistic DFT modelling. Spin-orbit relativistic effects, estimated by SO-ZORA formalism for one molecular unit, were evaluated. Finally, the X-ray structure of the title complex was determined, which proved that the former procedure is appropriate. The most important orbital interactions were investigated by Natural Bond Orbital analysis. The isotropic shielding values for S2CN-carbons were analysed by Natural Localised Molecular Orbital analysis. The present approach can be further extended to study other rare earth metal complexes, particularly those having similar but not yet solved crystal structures
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view