SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schindler Suzanne) "

Search: WFRF:(Schindler Suzanne)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barthélemy, Nicolas R., et al. (author)
  • CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease
  • 2023
  • In: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 3:4, s. 391-401
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) amyloid-β peptide (Aβ)42/Aβ40 and the concentration of tau phosphorylated at site 181 (p-tau181) are well-established biomarkers of Alzheimer’s disease (AD). The present study used mass spectrometry to measure concentrations of nine phosphorylated and five nonphosphorylated tau species and phosphorylation occupancies (percentage phosphorylated/nonphosphorylated) at ten sites. In the present study we show that, in 750 individuals with a median age of 71.2 years, CSF pT217/T217 predicted the presence of brain amyloid by positron emission tomography (PET) slightly better than Aβ42/Aβ40 (P = 0.02). Furthermore, for individuals with positive brain amyloid by PET (n = 263), CSF pT217/T217 was more strongly correlated with the amount of amyloid (Spearman’s ρ = 0.69) than Aβ42/Aβ40 (ρ = −0.42, P < 0.0001). In two independent cohorts of participants with symptoms of AD dementia (n = 55 and n = 90), CSF pT217/T217 and pT205/T205 were better correlated with tau PET measures than CSF p-tau181 concentration. These findings suggest that CSF pT217/T217 and pT205/T205 represent improved CSF biomarkers of amyloid and tau pathology in AD.
  •  
2.
  • Barthélemy, Nicolas R, et al. (author)
  • Highly Accurate Blood Test for Alzheimer's Disease Comparable or Superior to Clinical CSF Tests
  • In: Nature Medicine. - 1546-170X.
  • Journal article (peer-reviewed)abstract
    • With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. We evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-β (Aβ) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n=1,422) and the US Knight ADRC cohort (n=337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aβ42/40 and p-tau181/Aβ42. The primary and secondary outcomes were detection of brain Aβ or tau pathology, respectively, using PET imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aβ PET status, with an area-under-the-curve (AUC) for both between 0.95-0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired sub-cohorts (BioFINDER-2: n=720; Knight ADRC: n=50), plasma %p-tau217 had an accuracy, positive predictive value and negative predictive value of 89-90% for Aβ PET and 87-88% for tau-PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two cut-off approach. Blood plasma %p-tau217 demonstrated performance clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.
  •  
3.
  • Brand, Abby L., et al. (author)
  • The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer's disease : a literature review
  • 2022
  • In: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1, s. 195-195
  • Research review (peer-reviewed)abstract
    • The extracellular buildup of amyloid beta (Aβ) plaques in the brain is a hallmark of Alzheimer's disease (AD). Detection of Aβ pathology is essential for AD diagnosis and for identifying and recruiting research participants for clinical trials evaluating disease-modifying therapies. Currently, AD diagnoses are usually made by clinical assessments, although detection of AD pathology with positron emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis can be used by specialty clinics. These measures of Aβ aggregation, e.g. plaques, protofibrils, and oligomers, are medically invasive and often only available at specialized medical centers or not covered by medical insurance, and PET scans are costly. Therefore, a major goal in recent years has been to identify blood-based biomarkers that can accurately detect AD pathology with cost-effective, minimally invasive procedures.To assess the performance of plasma Aβ assays in predicting amyloid burden in the central nervous system (CNS), this review compares twenty-one different manuscripts that used measurements of 42 and 40 amino acid-long Aβ (Aβ42 and Aβ40) in plasma to predict CNS amyloid status. Methodologies that quantitate Aβ42 and 40 peptides in blood via immunoassay or immunoprecipitation-mass spectrometry (IP-MS) were considered, and their ability to distinguish participants with amyloidosis compared to amyloid PET and CSF Aβ measures as reference standards was evaluated. Recent studies indicate that some IP-MS assays perform well in accurately and precisely measuring Aβ and detecting brain amyloid aggregates.
  •  
4.
  • Delvenne, Aurore, et al. (author)
  • CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease
  • 2024
  • In: Alzheimer's & Dementia. - : John Wiley & Sons. - 1552-5260 .- 1552-5279.
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics.METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aβ]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance.RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress.DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology.HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
  •  
5.
  • Delvenne, Aurore, et al. (author)
  • Involvement of the choroid plexus in Alzheimer's disease pathophysiology : findings from mouse and human proteomic studies
  • 2024
  • In: Fluids and Barriers of the CNS. - : BioMed Central (BMC). - 2045-8118. ; 21:1
  • Journal article (peer-reviewed)abstract
    • Background: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans.Methods: We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD.Results: ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways.Conclusions: Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
  •  
6.
  • Frank, Brandon, et al. (author)
  • Cognition Mediates the Association Between Cerebrospinal Fluid Biomarkers of Amyloid and P-Tau and Neuropsychiatric Symptoms
  • 2024
  • In: JOURNAL OF ALZHEIMERS DISEASE. - 1387-2877 .- 1875-8908. ; 100:3, s. 1055-1073
  • Journal article (peer-reviewed)abstract
    • Background: Neuropsychiatric symptoms (NPS) can be an early manifestation of Alzheimer's disease (AD). However, the associations among NPS, cognition, and AD biomarkers across the disease spectrum are unclear. Objective: We analyzed cross-sectional mediation pathways between cerebrospinal fluid (CSF) biomarkers of AD (A beta(1-42), p-tau(181)), cognitive function, and NPS. Methods: Primary models included 781 participants from the National Alzheimer's Coordinating Center (NACC) data set who had CSF analyzed for AD biomarkers using Lumipulse. NPS were assessed with the Neuropsychiatric Inventory Questionnaire (NPI-Q). We assessed cognition with the harmonized MMSE/MoCA, as well as neuropsychological tests sensitive to AD pathology: story recall, naming, animal fluency, and Trails B. The Clinical Dementia Rating (CDR (R)) scale assessed dementia severity. Mediation models were estimated with Kemeny metric covariance in a structural equation model framework, controlling for age, education, sex, and APOE epsilon 4. Results: The sample was older adults (M = 73.85, SD = 6.68; 49.9% male, 390; 27.9% dementia, 218) who were predominantly white (n = 688, 88.1%). Higher p-tau(181)/A beta(1-42) ratio predicted higher NPI-Q, which was partially mediated by the MMSE/MoCA and, in a second model, story recall. No other pathway was statistically significant. Both the MMSE/MoCA and NPI-Q independently mediated the association between p-tau(181)/A beta(1-42) ratio and CDR global impairment. With dementia excluded, p-tau(181)/A beta(1-42) ratio was no longer associated with the NPI-Q. Conclusions: NPS may be secondary to cognitive impairment and AD pathology through direct and indirect pathways. NPS independently predict dementia severity in AD. However, AD pathology likely plays less of a role in NPS in samples without dementia.
  •  
7.
  • Hampel, Harald, et al. (author)
  • Blood-based biomarkers for Alzheimer's disease: Current state and future use in a transformed global healthcare landscape.
  • 2023
  • In: Neuron. - 1097-4199. ; 111:18, s. 2781-2799
  • Journal article (peer-reviewed)abstract
    • Timely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-β peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.
  •  
8.
  • Horie, Kanta, et al. (author)
  • CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease
  • 2023
  • In: Nature Medicine. - 1078-8956. ; 29:8, s. 1954-1963
  • Journal article (peer-reviewed)abstract
    • Aggregated insoluble tau is one of two defining features of Alzheimer’s disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R 2 ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R 2 ≤ 0.48) approached that of tau-PET (0.44 ≤ R 2 ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates (‘T’).
  •  
9.
  • Janelidze, Shorena, et al. (author)
  • Plasma Phosphorylated Tau 217 and Aβ42/40 to Predict Early Brain Aβ Accumulation in People Without Cognitive Impairment
  • 2024
  • In: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE Phase 3 trials of successful antiamyloid therapies in Alzheimer disease (AD) have demonstrated improved clinical efficacy in people with less severe disease. Plasma biomarkers will be essential for efficient screening of participants in future primary prevention clinical trials testing antiamyloid therapies in cognitively unimpaired (CU) individuals with initially low brain beta-amyloid (A beta) levels who are at high risk of accumulating A beta. OBJECTIVE To investigate if combining plasma biomarkers could be useful in predicting subsequent development of A beta pathology in CU individuals with subthreshold brain A beta levels (defined as A beta levels <40 Centiloids) at baseline. DESIGN, SETTING, AND PARTICIPANTS This was a longitudinal study including Swedish BioFINDER-2 (enrollment 2017-2022) and replication in 2 independent cohorts, the Knight Alzheimer Disease Research Center (Knight ADRC; enrollment 1988 and 2019) and Swedish BioFINDER-1 (enrollment 2009-2015). Included for analysis was a convenience sample of CU individuals with baseline plasma phosphorylated tau 217 (p-tau217) and A beta 42/40 assessments and A beta assessments with positron emission tomography (A beta-PET) or cerebrospinal fluid (CSF) A beta 42/40. Data were analyzed between April 2023 and May 2024. EXPOSURES Baseline plasma levels of A beta 42/40, p-tau217, the ratio of p-tau217 to nonphosphorylated tau (%p-tau217), p-tau231, and glial fibrillary acidic protein (GFAP). MAIN OUTCOMES AND MEASURES Cross-sectional and longitudinal PET and CSF measures of brain A beta pathology. RESULTS This study included 495 (BioFINDER-2), 283 (Knight ADRC), and 205 (BioFINDER-1) CU participants. In BioFINDER-2, the mean (SD) age was 65.7 (14.4) with 261 females (52.7%). When detecting abnormal CSF A beta-status, a combination of plasma %p-tau217 and A beta 42/40 showed better performance (area under the curve = 0.949; 95% CI, 0.929-0.970; P <.02) than individual biomarkers. In CU participants with subthreshold baseline A beta-PET, baseline plasma %p-tau217 and A beta 42/40 levels were significantly associated with baseline A beta-PET (n = 384) and increases in A beta-PET over time (n = 224). Associations of plasma %p-tau217 and A beta 42/40 and their interaction with baseline A beta-PET (%p-tau217: beta = 2.77; 95% CI, 1.84-3.70; A beta 42/40: beta = -1.64; 95% CI, -2.53 to -0.75; %p-tau217 x A beta 42/40: beta = -2.14; 95% CI, -2.79 to -1.49; P < .001) and longitudinal A beta-PET (%p-tau217: beta = 0.67; 95% CI, 0.48-0.87; A beta 42/40: beta = -0.33; 95% CI, -0.51 to -0.15; %p-tau217 x A beta 42/40: beta = -0.31; 95% CI, -0.44 to -0.18; P < .001) were also significant in the models combining the 2 baseline biomarkers as predictors. Similarly, baseline plasma p-tau217 and A beta 42/40 were independently associated with longitudinal A beta-PET in Knight ADRC (%p-tau217: beta = 0.71; 95% CI, 0.26-1.16; P = .002; A beta 42/40: beta = -0.74; 95% CI, -1.26 to -0.22; P = .006) and longitudinal CSF A beta 42/40 in BioFINDER-1 (p-tau217: beta = -0.0003; 95% CI, -0.0004 to -0.0001; P = .01; A beta 42/40: beta = 0.0004; 95% CI, 0.0002-0.0006; P < .001) in CU participants with subthreshold A beta levels at baseline. Plasma p-tau231 and GFAP did not provide any clear independent value. CONCLUSIONS AND RELEVANCE Results of this cohort study suggest that combining plasma p-tau217and A beta 42/40 levels could be useful for predicting development of A beta pathology in people with early stages of subthreshold A beta accumulation. These biomarkers might thus facilitate screening of participants for future primary prevention trials.
  •  
10.
  • Li, Yan, et al. (author)
  • Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques
  • 2022
  • In: Neurology. - 0028-3878. ; 98:7, s. 688-699
  • Journal article (peer-reviewed)abstract
    • Background and Objectives To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.MethodsPlasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.ResultsIn the combined cohort of 465 participants, plasma Aβ42/Aβ40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ϵ4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aβ42/Aβ40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ϵ4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals.DiscussionPlasma Aβ42/Aβ40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials.Classification of EvidenceThis study provides Class II evidence that plasma Aβ42/Aβ40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.
  •  
11.
  • Palmqvist, Sebastian, et al. (author)
  • Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care
  • 2024
  • In: JAMA. - 0098-7484 .- 1538-3598.
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE: An accurate blood test for Alzheimer disease (AD) could streamline the diagnostic workup and treatment of AD.OBJECTIVE: To prospectively evaluate a clinically available AD blood test in primary care and secondary care using predefined biomarker cutoff values.DESIGN, SETTING, AND PARTICIPANTS: There were 1213 patients undergoing clinical evaluation due to cognitive symptoms who were examined between February 2020 and January 2024 in Sweden. The biomarker cutoff values had been established in an independent cohort and were applied to a primary care cohort (n = 307) and a secondary care cohort (n = 300); 1 plasma sample per patient was analyzed as part of a single batch for each cohort. The blood test was then evaluated prospectively in the primary care cohort (n = 208) and in the secondary care cohort (n = 398); 1 plasma sample per patient was sent for analysis within 2 weeks of collection.EXPOSURE: Blood tests based on plasma analyses by mass spectrometry to determine the ratio of plasma phosphorylated tau 217 (p-tau217) to non-p-tau217 (expressed as percentage of p-tau217) alone and when combined with the amyloid-β 42 and amyloid-β 40 (Aβ42:Aβ40) plasma ratio (the amyloid probability score 2 [APS2]).MAIN OUTCOMES AND MEASURES: The primary outcome was AD pathology (determined by abnormal cerebrospinal fluid Aβ42:Aβ40 ratio and p-tau217). The secondary outcome was clinical AD. The positive predictive value (PPV), negative predictive value (NPV), diagnostic accuracy, and area under the curve (AUC) values were calculated.RESULTS: The mean age was 74.2 years (SD, 8.3 years), 48% were women, 23% had subjective cognitive decline, 44% had mild cognitive impairment, and 33% had dementia. In both the primary care and secondary care assessments, 50% of patients had AD pathology. When the plasma samples were analyzed in a single batch in the primary care cohort, the AUC was 0.97 (95% CI, 0.95-0.99) when the APS2 was used, the PPV was 91% (95% CI, 87%-96%), and the NPV was 92% (95% CI, 87%-96%); in the secondary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 83%-93%), and the NPV was 87% (95% CI, 82%-93%). When the plasma samples were analyzed prospectively (biweekly) in the primary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 81%-94%), and the NPV was 90% (95% CI, 84%-96%); in the secondary care cohort, the AUC was 0.97 (95% CI, 0.95-0.98) when the APS2 was used, the PPV was 91% (95% CI, 87%-95%), and the NPV was 91% (95% CI, 87%-95%). The diagnostic accuracy was high in the 4 cohorts (range, 88%-92%). Primary care physicians had a diagnostic accuracy of 61% (95% CI, 53%-69%) for identifying clinical AD after clinical examination, cognitive testing, and a computed tomographic scan vs 91% (95% CI, 86%-96%) using the APS2. Dementia specialists had a diagnostic accuracy of 73% (95% CI, 68%-79%) vs 91% (95% CI, 88%-95%) using the APS2. In the overall population, the diagnostic accuracy using the APS2 (90% [95% CI, 88%-92%]) was not different from the diagnostic accuracy using the percentage of p-tau217 alone (90% [95% CI, 88%-91%]).CONCLUSIONS AND RELEVANCE: The APS2 and percentage of p-tau217 alone had high diagnostic accuracy for identifying AD among individuals with cognitive symptoms in primary and secondary care using predefined cutoff values. Future studies should evaluate how the use of blood tests for these biomarkers influences clinical care.
  •  
12.
  • Salvadó, Gemma, et al. (author)
  • Disease staging of Alzheimer’s disease using a CSF-based biomarker model
  • In: Nature Aging.
  • Journal article (peer-reviewed)abstract
    • Biological staging of individuals with Alzheimer’s disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aβ42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0–5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aβ-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.
  •  
13.
  • Schindler, Suzanne E., et al. (author)
  • Acceptable performance of blood biomarker tests of amyloid pathology — recommendations from the Global CEO Initiative on Alzheimer’s Disease
  • 2024
  • In: Nature Reviews Neurology. - 1759-4758. ; 20:7, s. 426-439
  • Journal article (peer-reviewed)abstract
    • Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer’s Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75–85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests — a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.
  •  
14.
  • Schindler, Suzanne E, et al. (author)
  • Effect of Race on Prediction of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light.
  • 2022
  • In: Neurology. - 1526-632X. ; 99:3
  • Journal article (peer-reviewed)abstract
    • To evaluate whether plasma biomarkers of amyloid (Aβ42/Aβ40), tau (p-tau181 and p-tau231) and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups.Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status and cognitive status. Each participant underwent blood and cerebrospinal fluid (CSF) collection, and amyloid PET was performed in 103 participants (68%). Plasma Aβ42/Aβ40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aβ42/Aβ40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively.There were 76 matched pairs of AA and NHW participants (n=152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers and 91% were cognitively normal. AA were less likely than NHW to have brain amyloidosis by CSF Aβ42/Aβ40 (22% versus 43% positive, p = 0.003). The Receiver Operating Characteristic Area Under the Curve (ROC AUC) of CSF Aβ42/Aβ40 status with the plasma biomarkers was as follows: Aβ42/Aβ40, 0.86 (95% confidence intervals [CI] 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aβ42/Aβ40 status with plasma Aβ42/Aβ40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aβ42/Aβ40 positivity. In similar models based on plasma p-tau181, p-tau231 or Nfl, AA had a lower probability of CSF Aβ42/Aβ40 positivity (Odds Ratio [OR] 0.31 [95% CI 0.13-0.73], OR 0.30 [0.13-0.71]) and OR 0.27 [0.12-0.64], respectively. Models of amyloid PET status yielded similar findings.Models predicting brain amyloidosis using a high performance plasma Aβ42/Aβ40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA.
  •  
15.
  • Schindler, Suzanne E., et al. (author)
  • Maximizing Safety in the Conduct of Alzheimer's Disease Fluid Biomarker Research in the Era of COVID-19
  • 2020
  • In: Journal of Alzheimer's disease : JAD. - 1387-2877. ; 76:1, s. 27-31
  • Journal article (peer-reviewed)abstract
    • The coronavirus disease 2019 (COVID-19) pandemic led to an abrupt halt of many Alzheimer's disease (AD) research studies at sites spanning the world. This is especially true for studies requiring in-person contact, such as studies collecting biofluids. Since COVID-19 is likely to remain a threat for an extended period, the resumption of fluid biomarker studies requires the development and implementation of procedures that minimize the risk of in-person visits to participants, staff, and individuals handling the biofluid samples. Some issues to consider include structuring the visit workflow to minimize contacts and promote social distancing; screening and/or testing participants and staff for COVID-19; wearing masks and performing hand hygiene; and precautions for handling, storing, and analyzing biofluids. AD fluid biomarker research remains a vitally important public health priority and resuming studies requires appropriate safety procedures to protect research participants and staff.
  •  
16.
  • Sexton, Claire E., et al. (author)
  • Novel avenues of tau research
  • 2024
  • In: Alzheimer's and Dementia. - 1552-5260. ; 20:3, s. 2240-2261
  • Research review (peer-reviewed)abstract
    • INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
  •  
17.
  • Therriault, Joseph, et al. (author)
  • Biomarker-based staging of Alzheimer disease: rationale and clinical applications.
  • 2024
  • In: Nature reviews. Neurology. - 1759-4766 .- 1759-4758. ; 20:4, s. 232-244
  • Journal article (peer-reviewed)abstract
    • Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity ofAlzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view