SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schmucki R.) "

Search: WFRF:(Schmucki R.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pellissier, V., et al. (author)
  • Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data
  • 2020
  • In: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 34:3, s. 666-676
  • Journal article (peer-reviewed)abstract
    • The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.
  •  
2.
  • Alves, Wagner de F., et al. (author)
  • Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities
  • In: Global Ecology and Biogeography. - 1466-822X.
  • Journal article (peer-reviewed)abstract
    • Aim: Anthropogenic-driven biodiversity loss can impact ecosystem stability. However, most studies have only evaluated the diversity–stability relationship at the local scale and we do not fully understand which factors stabilize animal populations and communities across scales. Here, we investigate the role of species dispersal ability, climate, spatial distance and different facets of biodiversity on the stability of butterfly populations and communities across multiple spatial scales. Location: Primarily Western Europe. Time Period: 2005–2016. Major Taxa Studied: Butterflies (Rhopalocera) of Europe. Methods: We assembled a continent-wide database of European butterflies' abundance and used Structural Equation Modelling to evaluate the direct and indirect effects of multiple stabilizing mechanisms. In parallel, we tested the effect of dispersal ability on the stability at multiple spatial scales, using a butterfly mobility index as an indicator of dispersal capacity. Results: Regional stability strongly reflected local stability, which in turn was driven by both taxonomic and functional α-diversity. Spatial asynchrony was also important for regional stability and it was driven by both functional β-diversity and metapopulation asynchrony, which in turn increased with spatial distance among communities. We observed a positive effect of temperature on functional α-diversity and on local stability, whereas precipitation negatively influenced local diversity. Finally, spatial asynchrony contributed more to the regional stability of less mobile species compared to highly mobile ones, indicating that both extrinsic and intrinsic determinants of connectivity impact regional stability indirectly. Main Conclusions: Our results demonstrate the importance of local and regional processes for regional stability. However, the relative contribution of spatial asynchrony and metapopulation asynchrony increases with connectivity loss, especially for less mobile species, indicating that landscape management should be tailored depending on the dispersal capacity of organisms. Both local biodiversity loss and regional biotic homogenization destabilize metacommunities, with potential implications for the reliable provision of ecosystem functions.
  •  
3.
  • Audusseau, Hélène, et al. (author)
  • Ecology and Genetic Structure of the Parasitoid Phobocampe confusa (Hymenoptera: Ichneumonidae) in Relation to Its Hosts, Aglais Species (Lepidoptera: Nymphalidae)
  • 2020
  • In: Insects. - : MDPI AG. - 2075-4450. ; 11:8
  • Journal article (peer-reviewed)abstract
    • The biology of parasitoids in natural ecosystems remains very poorly studied, though they are key species for their functioning. Here we focused on Phobocampe confusa, a Nymphalini specialist, responsible for high mortality rates in charismatic butterfly species in Europe (genus Aglais). We studied its ecology and genetic structure in connection with those of its host butterflies in Sweden. To this aim, we gathered data from 428 P. confusa individuals reared from 6094 butterfly larvae (of A. urticae, A. io, and in two occasions of Araschnia levana) collected over two years (2017 and 2018) and across 19 sites distributed along a 500 km latitudinal gradient. We found that P. confusa is widely distributed along the latitudinal gradient. Its distribution seems constrained over time by the phenology of its hosts. The large variation in climatic conditions between sampling years explains the decrease in phenological overlap between P. confusa and its hosts in 2018 and the 33.5% decrease in the number of butterfly larvae infected. At least in this study, P. confusa seems to favour A. urticae as host. While it parasitized nests of A. urticae and A. io equally, the proportion of larvae parasitized is significantly higher for A. urticae. At the landscape scale, P. confusa is almost exclusively found in vegetated open land and near deciduous forests, whereas artificial habitats are negatively correlated with the likelihood of a nest to be parasitized. The genetic analyses on 89 adult P. confusa and 87 adult A. urticae using CO1 and AFLP markers reveal a low genetic diversity in P. confusa and a lack of genetic structure in both species, at the scale of our sampling. Further genetic studies using high-resolution genomics tools will be required to better understand the population genetic structure of P. confusa, its biotic interactions with its hosts, and ultimately the stability and the functioning of natural ecosystems.
  •  
4.
  • Audusseau, Hélène, et al. (author)
  • Rewiring of interactions in a changing environment : nettle-feeding butterflies and their parasitoids
  • 2021
  • In: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 130:4, s. 624-636
  • Journal article (peer-reviewed)abstract
    • Climate and land use change can alter the incidence and strength of biotic interactions, with important effects on the distribution, abundance and function of species. To assess the importance of these effects and their dynamics, studies quantifying how biotic interactions change in space and time are needed. We studied interactions between nettle-feeding butterflies and their shared natural enemies (parasitoids) locally and across 500 km latitudinal gradient in Sweden. We also examined the potential impact of the range-expansion of the butterfly Araschnia levana on resident butterflies via shared parasitoids, by studying how parasitism in resident butterflies covaries with the presence or absence of the newly-established species. We collected 6777 larvae of four nettle-feeding butterfly species (Aglais urticae, Aglais io, Ar. levana and Vanessa atalanta), over two years, at 19 sites distributed along the gradient. We documented the parasitoid complex for each butterfly species and measured their overlap, and analysed how parasitism rates were affected by butterfly species assemblage, variations in abundance, time, and the arrival of Ar. levana. Parasitoids caused high mortality, with substantial overlap in the complex of parasitoids associated with the four host butterflies. Levels of parasitism differed significantly among butterflies and were influenced by the local butterfly species assemblage. Our results also suggest that parasitism in resident butterflies is elevated at sites where Ar. levana has been established for a longer period. In our study system, variations in butterfly species assemblages were associated in a predictable way with substantial variations in rates of parasitism. This relationship is likely to affect the dynamics of the butterfly host species, and potentially cascade to the larger number of species with which they interact. These results highlight the importance of indirect interactions and their potential to reorganise ecological communities, especially in the context of shifts in species distributions in a warmer world.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view