SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schroeter Aileen) "

Search: WFRF:(Schroeter Aileen)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blaschke, Stefan J., et al. (author)
  • Early Blood–Brain Barrier Impairment as a Pathological Hallmark in a Novel Model of Closed-Head Concussive Brain Injury (CBI) in Mice
  • 2024
  • In: International Journal of Molecular Sciences. - 1661-6596. ; 25:9
  • Journal article (peer-reviewed)abstract
    • Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice. Longitudinal behavioral assessments were conducted for up to seven days afterward, alongside the evaluation of structural cerebral integrity by in vivo magnetic resonance imaging (MRI, 9.4 T), and validated ex vivo by histology. Blood–brain barrier (BBB) integrity was analyzed by means of fluorescent dextran- as well as immunoglobulin G (IgG) extravasation, and neuroinflammatory processes were characterized both in vivo by positron emission tomography (PET) using [18F]DPA-714 and ex vivo using immunohistochemistry. While a single CBI resulted in a defined, subacute neuropsychiatric phenotype, longitudinal cognitive testing revealed a marked decrease in spatial cognition, most pronounced in mice subjected to CBI at high frequency (every 48 h). Functional deficits were correlated to a parallel disruption of the BBB, (R2 = 0.29, p < 0.01), even detectable by a significant increase in hippocampal uptake of [18F]DPA-714, which was not due to activation of microglia, as confirmed immunohistochemically. Featuring a mild but widespread disruption of the BBB without evidence of macroscopic damage, this model induces a characteristic neuro-psychiatric phenotype that correlates to the degree of BBB disruption. Based on these findings, the BBB may function as both a biomarker of CBI severity and as a potential treatment target to improve recovery from concussion.
  •  
2.
  • Georgiadis, Marios, et al. (author)
  • Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin’s nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method’s sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view