SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schumacher Fredrick R) "

Search: WFRF:(Schumacher Fredrick R)

  • Result 1-45 of 45
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Hollestelle, Antoinette, et al. (author)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • In: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Journal article (peer-reviewed)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
3.
  • Huyghe, Jeroen R, et al. (author)
  • Genetic architectures of proximal and distal colorectal cancer are partly distinct
  • 2021
  • In: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 70:7, s. 1325-1334
  • Journal article (peer-reviewed)abstract
    • Objective: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.Design: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.Results: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.Conclusion: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
  •  
4.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
5.
  • Chen, Hongjie, et al. (author)
  • Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals
  • 2021
  • In: Human Genetics and Genomics Advances. - : Cell Press. - 2666-2477. ; 2:3
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis.
  •  
6.
  • Huyghe, Jeroen R., et al. (author)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Journal article (peer-reviewed)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
7.
  • Machiela, Mitchell J., et al. (author)
  • Characterization of Large Structural Genetic Mosaicism in Human Autosomes
  • 2015
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
  • Journal article (peer-reviewed)abstract
    • Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
  •  
8.
  • Archambault, Alexi N., et al. (author)
  • Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
  • 2020
  • In: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1274-1286.e12
  • Journal article (peer-reviewed)abstract
    • BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 x 10(-5)). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
  •  
9.
  • Jacobs, Kevin B, et al. (author)
  • Detectable clonal mosaicism and its relationship to aging and cancer.
  • 2012
  • In: Nature Genetics. - New York : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 44:6, s. 651-658
  • Journal article (peer-reviewed)abstract
    • In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
  •  
10.
  • Machiela, Mitchell J, et al. (author)
  • Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
  • 2016
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  •  
11.
  • Thomas, Minta, et al. (author)
  • Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
  •  
12.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
13.
  • Watts, Eleanor L., et al. (author)
  • Observational and genetic associations between cardiorespiratory fitness and cancer : a UK Biobank and international consortia study
  • 2024
  • In: British Journal of Cancer. - : Springer Nature. - 0007-0920 .- 1532-1827. ; 130, s. 114-124
  • Journal article (peer-reviewed)abstract
    • Background: The association of fitness with cancer risk is not clear.Methods: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method.Results: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min−1⋅kg−1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73–0.89), colorectal (0.94, 0.90–0.99), and breast cancer (0.96, 0.92–0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min−1⋅kg−1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86–0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated.Discussion: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention.
  •  
14.
  • Chen, Zhishan, et al. (author)
  • Fine-mapping analysis including over 254 000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
  •  
15.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
16.
  • Schmit, Stephanie L, et al. (author)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer.
  • 2019
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 111:2, s. 146-157
  • Journal article (peer-reviewed)abstract
    • Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  •  
17.
  • Adams, Charleen, et al. (author)
  • Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study
  • 2019
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:1, s. 208-216
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Whether associations between circulating metabolites and prostate cancer are causal is unknown. We report on the largest study of metabolites and prostate cancer (2,291 cases and 2,661 controls) and appraise causality for a subset of the prostate cancer-metabolite associations using two-sample Mendelian randomization (MR).MATERIALS AND METHODS: The case-control portion of the study was conducted in nine UK centres with men aged 50-69 years who underwent prostate-specific antigen (PSA) screening for prostate cancer within the Prostate testing for cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (p <0.0014, multiple-testing threshold). These fell into four classes: i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); ii) fatty acids and ratios; iii) amino acids; iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
  •  
18.
  • Couch, Fergus J., et al. (author)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
19.
  • Guo, Xingyi, et al. (author)
  • Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects
  • 2020
  • In: Gastroenterology. - : Elsevier. - 0016-5085 .- 1528-0012. ; 160:4, s. 1164-1178
  • Journal article (peer-reviewed)abstract
    • Background and Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes.Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted.Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis.Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
  •  
20.
  • Kapoor, Pooja Middha, et al. (author)
  • Combined associations of a polygenic risk score and classical risk factors with breast cancer risk
  • 2021
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 113:3, s. 329-337
  • Journal article (peer-reviewed)abstract
    • We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer. 
  •  
21.
  • Law, Philip J., et al. (author)
  • Association analyses identify 31 new risk loci for colorectal cancer susceptibility
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.
  •  
22.
  • Lettre, Guillaume, et al. (author)
  • Identification of ten loci associated with height highlights new biological pathways in human growth
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 584-591
  • Journal article (peer-reviewed)abstract
    • Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet- undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in 410,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 x 10(-7) to 8 x 10(-22)). Together, these 12 loci account for similar to 2% of the population variation in height. Individuals with <= 8 height-increasing alleles and >= 16 height-increasing alleles differ in height by similar to 3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait.
  •  
23.
  • Markt, Sarah C., et al. (author)
  • Genetic Variation Across C-Reactive Protein and Risk of Prostate Cancer
  • 2014
  • In: The Prostate. - : Wiley-Blackwell. - 0270-4137 .- 1097-0045. ; 74:10, s. 1034-1042
  • Journal article (peer-reviewed)abstract
    • BACKGROUND. Inflammation has been hypothesized to play an important etiological role in the initiation or progression of prostate cancer. Circulating levels of the systemic inflammation marker C-reactive protein (CRP) have been associated with increased risk of prostate cancer. We investigated the role of genetic variation in CRP and prostate cancer, under the hypothesis that variants may alter risk of disease.METHODS. We undertook a case-control study nested within the prospective Physicians' Health Study among 1,286 men with incident prostate cancer and 1,264 controls. Four single-nucleotide polymorphisms (SNPs) were selected to capture the common genetic variation across CRP (r(2) > 0.8). We used unconditional logistic regression to assess the association between each SNP and risk of prostate cancer. Linear regression models explored associations between each genotype and plasma CRP levels.RESULTS. None of the CRP SNPs were associated with prostate cancer overall. Individuals with one copy of the minor allele (C) in rs1800947 had an increased risk of high-grade prostate cancer (OR: 1.7; 95% CI: 1.1-2.8), and significantly lower mean CRP levels (P-value < 0.001), however, we found no significant association with lethal disease. Mean CRP levels were significantly elevated in men with one or two copies of the minor allele in rs3093075 and rs1417939, but these were unrelated to prostate cancer risk.CONCLUSION. Our findings suggest that SNPs in the CRP gene are not associated with risk of overall or lethal prostate cancer. Polymorphisms in CRP rs1800947 may be associated with higher grade disease, but our results require replication in other cohorts.
  •  
24.
  • Matejcic, Marco, et al. (author)
  • Germline variation at 8q24 and prostate cancer risk in men of European ancestry
  • 2018
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 x 10(-15)), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95% CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for similar to 25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
  •  
25.
  • Meyer, Mara S., et al. (author)
  • Genetic variation in RNASEL associated with prostate cancer risk and progression
  • 2010
  • In: Carcinogenesis. - Oxford, United Kingdom : Oxford University Press. - 0143-3334 .- 1460-2180. ; 31:9, s. 1597-603
  • Journal article (peer-reviewed)abstract
    • Variation in genes contributing to the host immune response may mediate the relationship between inflammation and prostate carcinogenesis. RNASEL at chromosome 1q25 encodes ribonuclease L, part of the interferon-mediated immune response to viral infection. We therefore investigated the association between variation in RNASEL and prostate cancer risk and progression in a study of 1286 cases and 1264 controls nested within the prospective Physicians' Health Study. Eleven single-nucleotide polymorphisms (SNPs) were selected using the web-based 'Tagger' in the HapMap CEPH panel (Utah residents of Northern and Western European Ancestry). Unconditional logistic regression models assessed the relationship between each SNP and incident advanced stage (T(3)/T(4), T(0)-T(4)/M(1) and lethal disease) and high Gleason grade (>/=7) prostate cancer. Further analyses were stratified by calendar year of diagnosis. Cox proportional hazards models examined the relationship between genotype and prostate cancer-specific survival. We also explored associations between genotype and serum inflammatory biomarkers interleukin-6 (IL-6), C-reactive protein (CRP) and tumor necrosis factor-alpha receptor 2 using linear regression. Individuals homozygous for the variant allele of rs12757998 had an increased risk of prostate cancer [AA versus GG; odds ratio (OR): 1.63, 95% confidence interval (CI): 1.18-2.25), and more specifically, high-grade tumors (OR: 1.90, 95% CI: 1.25-2.89). The same genotype was associated with increased CRP (P = 0.02) and IL-6 (P = 0.05) levels. Missense mutations R462Q and D541E were associated with an increased risk of advanced stage disease only in the pre-prostate-specific antigen era. There were no significant associations with survival. The results of this study support a link between RNASEL and prostate cancer and suggest that the association may be mediated through inflammation. These novel findings warrant replication in future studies.
  •  
26.
  • Shui, Irene M, et al. (author)
  • Genetic variation in the toll-like receptor 4 and prostate cancer incidence and mortality
  • 2012
  • In: The Prostate. - : Wiley-Blackwell. - 0270-4137 .- 1097-0045. ; 72:2, s. 209-216
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Common genetic variants in the Toll-like receptor 4 (TLR4), which is involved in inflammation and immune response pathways, may be important for prostate cancer.METHODS: In a large nested case-control study of prostate cancer in the Physicians' Health Study (1982-2004), 10 single nucleotide polymorphisms (SNPs) were selected and genotyped to capture common variation within the TLR4 gene as well as 5 kb up and downstream. Unconditional logistic regression was used to assess associations of these SNPs with total prostate cancer incidence, and with prostate cancers defined as advanced stage/lethal (T3/T4, M1/N1(T1-T4), lethal) or high Gleason grade (7 (4 + 3) or greater). Cox-proportional hazards regression was used to assess progression to metastases and death among prostate cancer cases.RESULTS: The study included 1,267 controls and 1,286 incident prostate cancer cases, including 248 advanced stage/lethal and 306 high grade cases. During a median follow-up of 10.6 years, 183 men died of prostate cancer or developed distant metastases. No statistically significant associations between the TLR4 SNPs were found for total prostate cancer incidence, including SNPs for which an association was reported in other published studies. Additionally, there were no significant associations with TLR4 SNPS and the incidence of advanced stage/lethal, or high grade cancers; nor was there evidence among prostate cancer cases for associations of TLR4 SNPs with progression to prostate cancer specific mortality or bony metastases.CONCLUSIONS: Results from this prospective nested case-control study suggest that genetic variation across TLR4 alone is not strongly associated with prostate cancer risk or mortality.
  •  
27.
  • Wu, Lang, et al. (author)
  • Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk : A Transcriptome-Wide Association Study in over 140,000 European Descendants
  • 2019
  • In: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:13, s. 3192-3204
  • Journal article (peer-reviewed)abstract
    • Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 x 10(-6), a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 x 10(-6) after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. Significance: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
  •  
28.
  • Ahn, Jiyoung, et al. (author)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
  • Journal article (peer-reviewed)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
29.
  • Barrdahl, Myrto, et al. (author)
  • Post-G WAS gene-environment interplay in breast cancer : results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79 000 women
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:19, s. 5260-5270
  • Journal article (peer-reviewed)abstract
    • We studied the interplay between 39 breast cancer (BC) risk SNPs and established BC risk (body mass index, height, age at menarche, parity, age at menopause, smoking, alcohol and family history of BC) and prognostic factors (TNM stage, tumor grade, tumor size, age at diagnosis, estrogen receptor status and progesterone receptor status) as joint determinants of BC risk. We used a nested case-control design within the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3), with 16 285 BC cases and 19 376 controls. We performed stratified analyses for both the risk and prognostic factors, testing for heterogeneity for the risk factors, and case-case comparisons for differential associations of polymorphisms by subgroups of the prognostic factors. We analyzed multiplicative interactions between the SNPs and the risk factors. Finally, we also performed a meta-analysis of the interaction ORs from BPC3 and the Breast Cancer Association Consortium. After correction for multiple testing, no significant interaction between the SNPs and the established risk factors in the BPC3 study was found. The meta-analysis showed a suggestive interaction between smoking status and SLC4A7-rs4973768 (P-interaction = 8.84 x 10(-4)) which, although not significant after considering multiple comparison, has a plausible biological explanation. In conclusion, in this study of up to almost 79 000 women we can conclusively exclude any novel major interactions between genome-wide association studies hits and the epidemiologic risk factors taken into consideration, but we propose a suggestive interaction between smoking status and SLC4A7-rs4973768 that if further replicated could help our understanding in the etiology of BC.
  •  
30.
  • Berndt, Sonja I, et al. (author)
  • Large-scale fine mapping of the HNF1B locus and prostate cancer risk
  • 2011
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3322-3329
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
  •  
31.
  • Campa, Daniele, et al. (author)
  • A genome-wide "pleiotropy scan'' does not identify new susceptibility loci for estrogen receptor negative breast cancer
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2, s. e85955-
  • Journal article (peer-reviewed)abstract
    • Approximately 15-30% of all breast cancer tumors are estrogen receptor negative (ER-). Compared with ER- positive (ER+) disease they have an earlier age at onset and worse prognosis. Despite the vast number of risk variants identified for numerous cancer types, only seven loci have been unambiguously identified for ER- negative breast cancer. With the aim of identifying new susceptibility SNPs for this disease we performed a pleiotropic genome-wide association study (GWAS). We selected 3079 SNPs associated with a human complex trait or disease at genome-wide significance level (P<5x10(-8)) to perform a secondary analysis of an ER- negative GWAS from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3), including 1998 cases and 2305 controls from prospective studies. We then tested the top ten associations (i.e. with the lowest P-values) using three additional populations with a total sample size of 3509 ER+ cases, 2543 ER- cases and 7031 healthy controls. None of the 3079 selected variants in the BPC3 ER- GWAS were significant at the adjusted threshold. 186 variants were associated with ER- breast cancer risk at a conventional threshold of P<0.05, with P-values ranging from 0.049 to 2.3 x 10(-4). None of the variants reached statistical significance in the replication phase. In conclusion, this study did not identify any novel susceptibility loci for ER-breast cancer using a "pleiotropic approach''.
  •  
32.
  • Campa, Daniele, et al. (author)
  • Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium
  • 2011
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 103:16, s. 1252-1263
  • Journal article (peer-reviewed)abstract
    • Background Recently, several genome-wide association studies have identified various genetic susceptibility loci for breast cancer. Relatively little is known about the possible interactions between these loci and the established risk factors for breast cancer. Methods To assess interactions between single-nucleotide polymorphisms (SNPs) and established risk factors, we prospectively collected DNA samples and questionnaire data from 8576 breast cancer case subjects and 11 892 control subjects nested within the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3). We genotyped 17 germline SNPs (FGFR2-rs2981582, FGFR2-rs3750817, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, CASP8-rs1045485, LSP1-rs3817198, COL1A1-rs2075555, COX11-rs6504950, RNF146-rs2180341, 6q25-rs2046210, SLC4A7-rs4973768, NOTCH2-rs11249433, 5p12-rs4415084, 5p12-rs10941679, RAD51L1-rs999737), and odds ratios were estimated by logistic regression to confirm previously reported associations with breast cancer risk. We performed likelihood ratio test to assess interactions between 17 SNPs and nine established risk factors (age at menarche, parity, age at menopause, use of hormone replacement therapy, family history, height, body mass index, smoking status, and alcohol consumption), and a correction for multiple testing of 153 tests (adjusted P value threshold = .05/153 = 3 x 10(-4)) was done. Casecase comparisons were performed for possible differential associations of polymorphisms by subgroups of tumor stage, estrogen and progesterone receptor status, and age at diagnosis. All statistical tests were two-sided. Results We confirmed the association of 14 SNPs with breast cancer risk (P(trend) = 2.57 x 10(-3) -3.96 x 10(-19)). Three SNPs (LSP1-rs3817198, COL1A1-rs2075555, and RNF146-rs2180341) did not show association with breast cancer risk. After accounting for multiple testing, no statistically significant interactions were detected between the 17 SNPs and the nine risk factors. We also confirmed that SNPs in FGFR2 and TNRC9 were associated with greater risk of estrogen receptor-positive than estrogen receptor-negative breast cancer (P(heterogeneity) = .0016 for FGFR2-rs2981582 and P(heterogeneity) = .0053 for TNRC9-rs3803662). SNP 5p12-rs10941679 was statistically significantly associated with greater risk of progesterone receptor-positive than progesterone receptor-negative breast cancer (P(heterogeneity) = .0028). Conclusion This study does not support the hypothesis that known common breast cancer susceptibility loci strongly modify the associations between established risk factors and breast cancer.
  •  
33.
  • Gu, Fangyi, et al. (author)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Journal article (peer-reviewed)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
34.
  • Haiman, Christopher A., et al. (author)
  • A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 61-1210
  • Journal article (peer-reviewed)abstract
    • Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 x 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 x 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 x 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.
  •  
35.
  • Lindstroem, Sara, et al. (author)
  • Common genetic variants in prostate cancer risk prediction-results from the NCI breast and prostate cancer cohort consortium (BPC3)
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 21:3, s. 437-444
  • Journal article (peer-reviewed)abstract
    • Background: One of the goals of personalized medicine is to generate individual risk profiles that could identify individuals in the population that exhibit high risk. The discovery of more than two-dozen independent single-nucleotide polymorphism markers in prostate cancer has raised the possibility for such risk stratification. In this study, we evaluated the discriminative and predictive ability for prostate cancer risk models incorporating 25 common prostate cancer genetic markers, family history of prostate cancer, and age.Methods: We fit a series of risk models and estimated their performance in 7,509 prostate cancer cases and 7,652 controls within the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We also calculated absolute risks based on SEER incidence data.Results: The best risk model (C-statistic = 0.642) included individual genetic markers and family history of prostate cancer. We observed a decreasing trend in discriminative ability with advancing age (P = 0.009), with highest accuracy in men younger than 60 years (C-statistic = 0.679). The absolute ten-year risk for 50-year-old men with a family history ranged from 1.6% (10th percentile of genetic risk) to 6.7% (90th percentile of genetic risk). For men without family history, the risk ranged from 0.8% (10th percentile) to 3.4% (90th percentile).Conclusions: Our results indicate that incorporating genetic information and family history in prostate cancer risk models can be particularly useful for identifying younger men that might benefit from prostate-specific antigen screening.Impact: Although adding genetic risk markers improves model performance, the clinical utility of these genetic risk models is limited.
  •  
36.
  • Lindstroem, Sara, et al. (author)
  • Replication of five prostate cancer loci identified in an Asian population-results from the NCI breast and prostate cancer cohort consortium (BPC3)
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - Philadelphia : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:1, s. 212-216
  • Journal article (peer-reviewed)abstract
    • Background: A recent genome-wide association study (GWAS) of prostate cancer in a Japanese population identified five novel regions not previously discovered in other ethnicities. In this study, we attempt to replicate these five loci in a series of nested prostate cancer case-control studies of European ancestry. Methods: We genotyped five single-nucleotide polymorphism (SNP): rs13385191 (chromosome 2p24), rs12653946 (5p15), rs1983891 (6p21), rs339331 (6p22), and rs9600079 (13q22), in 7,956 prostate cancer cases and 8,148 controls from a series of nested case-control studies within the National cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We tested each SNP for association with prostate cancer risk and assessed whether associations differed with respect to disease severity and age of onset. Results: Four SNPs (rs13385191, rs12653946, rs1983891, and rs339331) were significantly associated with prostate cancer risk (P values ranging from 0.01 to 1.1 x 10(-5)). Allele frequencies and ORs were overall lower in our population of European descent than in the discovery Asian population. SNP rs13385191 (C2orf43) was only associated with low-stage disease (P = 0.009, case-only test). No other SNP showed association with disease severity or age of onset. We did not replicate the 13q22 SNP, rs9600079 (P = 0.62). Conclusions: Four SNPs associated with prostate cancer risk in an Asian population are also associated with prostate cancer risk in men of European descent. Impact: This study illustrates the importance of evaluation of prostate cancer risk markers across ethnic groups. Cancer Epidemiol Biomarkers Prev; 21(1); 212-16. (C) 2011 AACR.
  •  
37.
  • Mavaddat, Nasim, et al. (author)
  • Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:5, s. 036-036
  • Journal article (peer-reviewed)abstract
    • Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
  •  
38.
  • Schumacher, Fredrick R., et al. (author)
  • A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among
  • 2010
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:15, s. 3089-3101
  • Journal article (peer-reviewed)abstract
    • The insulin-like growth factor (IGF) pathway has been implicated in prostate development and carcinogenesis. We conducted a comprehensive analysis, utilizing a resequencing and tagging single-nucleotide polymorphism (SNP) approach, between common genetic variation in the IGF1, IGF binding protein (BP) 1, and IGFBP3 genes with IGF-I and IGFBP-3 blood levels, and prostate cancer (PCa) risk, among Caucasians in the NCI Breast and Prostate Cancer Cohort Consortium. We genotyped 14 IGF1 SNPs and 16 IGFBP1/IGFBP3 SNPs to capture common [minor allele frequency (MAF) >= 5%] variation among Caucasians. For each SNP, we assessed the geometric mean difference in IGF blood levels (N = 5684) across genotypes and the association with PCa risk (6012 PCa cases/6641 controls). We present two-sided statistical tests and correct for multiple comparisons. A non-synonymous IGFBP3 SNP in exon 1, rs2854746 (Gly32Ala), was associated with IGFBP-3 blood levels (P-adj = 8.8 x 10(-43)) after adjusting for the previously established IGFBP3 promoter polymorphism A-202C (rs2854744); IGFBP-3 blood levels were 6.3% higher for each minor allele. For IGF1 SNP rs4764695, the risk estimates among heterozygotes was 1.01 (99% CI: 0.90-1.14) and 1.20 (99% CI: 1.06-1.37) for variant homozygotes with overall PCa risk. The corrected allelic P-value was 8.7 x 10(-3). IGF-I levels were significantly associated with PCa risk (P-trend = 0.02) with a 21% increase of PCa risk when compared with the highest quartile to the lowest quartile. We have identified SNPs significantly associated with IGFBP-3 blood levels, but none of these alter PCa risk; however, a novel IGF1 SNP, not associated with IGF-I blood levels, shows preliminary evidence for association with PCa risk among Caucasians.
  •  
39.
  • Schumacher, Fredrick R., et al. (author)
  • Genome-wide association study identifies new prostate cancer susceptibility loci
  • 2011
  • In: Human Molecular Genetics. - London : IRL Press. - 0964-6906 .- 1460-2083. ; 20:19, s. 3867-3875
  • Journal article (peer-reviewed)abstract
    • Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade >= 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P < 0.02) in two published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P = 4.3 x 10(-8)). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P = 8.6 x 10(-9)). The estimated per-allele odds ratios for these loci (1.14 for rs2292884 and 1.17 for rs902774) did not differ between advanced and non-advanced PrCa (case-only test for heterogeneity P = 0.72 and P = 0.61, respectively). Further studies will be needed to assess whether these or other loci are differentially associated with PrCa subtypes.
  •  
40.
  • Setiawan, Veronica Wendy, et al. (author)
  • CYP17 genetic variation and risk of breast and prostate cancer from the national Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2007
  • In: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 16:11, s. 2237-2246
  • Journal article (peer-reviewed)abstract
    • CYP17 encodes cytochrome p450c17 alpha, which mediates activities essential for the production of sex steroids. Common germ line variation in the CYP17 gene has been related to inconsistent results in breast and prostate cancer, with most studies focusing on the nonsynonymous single nucleotide polymorphism (SNP) T27C (rs743572). We comprehensively characterized variation in CYP17 by direct sequencing of exons followed by dense genotyping across the 58 kb region around CYP17 in five racial/ethnic populations. Two blocks of strong linkage disequilibrium were identified and nine haplotype-tagging SNPs, including T27C, were chosen to predict common haplotypes (R-h(2) >= 0.85). These haplotype-tagging SNPs were genotyped in 8,138 prostate cancer cases and 9,033 controls, and 5,333 breast cancer cases and 7,069 controls from the Breast and Prostate Cancer Cohort Consortium. We observed borderline significant associations with prostate cancer for rs2486758 [TC versus TT, odds ratios (OR), 1.07; 95% confidence intervals (95% Cl), 1.00-1.14; CC versus TT, OR, 1.09; 95% CI, 0.95-1.26; P trend = 0.04] and rs6892 (AG versus AA, OR, 1.08; 95% CI, 1.00-1.15; GG versus AA, OR, 1.11; 95% CI, 0.95-1.30; P trend = 0.03). We also observed marginally significant associations with breast cancer for rs4919687 (GA versus GG, OR, 1.04; 95% CI, 0.97-1.12, AA versus GG, OR, 1.17; 95% CI, 1.03-1.34; P trend = 0.03) and rs4919682 (CT versus CC, OR, 1.04; 95% CI, 0.97-1.12; TT versus CC, OR, 1.16; 95% CI, 1.01-1.33; P trend = 0.04). Common variation at CYP17 was not associated with circulating sex steroid hormones in men or postmenopausal women. Our findings do not support the hypothesis that common germ line variation in CYP17 makes a substantial contribution to postmenopausal breast or prostate cancer susceptibility.
  •  
41.
  • Shui, Irene M., et al. (author)
  • Prostate Cancer (PCa) Risk Variants and Risk of Fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium
  • 2014
  • In: European Urology. - : Elsevier BV. - 0302-2838 .- 1873-7560. ; 65:6, s. 1069-1075
  • Journal article (peer-reviewed)abstract
    • Background: Screening and diagnosis of prostate cancer (PCa) is hampered by an inability to predict who has the potential to develop fatal disease and who has indolent cancer. Studies have identified multiple genetic risk loci for PCa incidence, but it is unknown whether they could be used as biomarkers for PCa-specific mortality (PCSM). Objective: To examine the association of 47 established PCa risk single-nucleotide polymorphisms (SNPs) with PCSM. Design, setting, and participants: We included 10 487 men who had PCa and 11 024 controls, with a median follow-up of 8.3 yr, during which 1053 PCa deaths occurred. Outcome measurements and statistical analysis: The main outcome was PCSM. The risk allele was defined as the allele associated with an increased risk for PCa in the literature. We used Cox proportional hazards regression to calculate the hazard ratios of each SNP with time to progression to PCSM after diagnosis. We also used logistic regression to calculate odds ratios for each risk SNP, comparing fatal PCa cases to controls. Results and limitations: Among the cases, we found that 8 of the 47 SNPs were significantly associated (p < 0.05) with time to PCSM. The risk allele of rs11672691 (intergenic) was associated with an increased risk for PCSM, while 7 SNPs had risk alleles inversely associated (rs13385191 [C2orf43], rs17021918 [PDLIM5], rs10486567 [JAZF1], rs6465657 [LMTK2], rs7127900 (intergenic), rs2735839 [KLK3], rs10993994 [MSMB], rs13385191 [C2orf43]). In the case-control analysis, 22 SNPs were associated (p < 0.05) with the risk of fatal PCa, but most did not differentiate between fatal and nonfatal PCa. Rs11672691 and rs10993994 were associated with both fatal and nonfatal PCa, while rs6465657, rs7127900, rs2735839, and rs13385191 were associated with nonfatal PCa only. Conclusions: Eight established risk loci were associated with progression to PCSM after diagnosis. Twenty-two SNPs were associated with fatal PCa incidence, but most did not differentiate between fatal and nonfatal PCa. The relatively small magnitudes of the associations do not translate well into risk prediction, but these findings merit further follow-up, because they may yield important clues about the complex biology of fatal PCa. Patient summary: In this report, we assessed whether established PCa risk variants could predict PCSM. We found eight risk variants associated with PCSM: One predicted an increased risk of PCSM, while seven were associated with decreased risk. Larger studies that focus on fatal PCa are needed to identify more markers that could aid prediction. (C) 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
  •  
42.
  • Szulkin, Robert, et al. (author)
  • Prediction of individual genetic risk to prostate cancer using a polygenic score.
  • 2015
  • In: The Prostate. - : Wiley. - 0270-4137 .- 1097-0045. ; 75:13, s. 1467-74
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction.METHODS: We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls.RESULTS: The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk.CONCLUSIONS: Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction.
  •  
43.
  • Tsilidis, Konstantinos K., et al. (author)
  • Insulin-like growth factor pathway genes and blood concentrations, dietary protein and risk of prostate cancer in the NCI Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2013
  • In: International Journal of Cancer. - Hoboken, NJ, USA : Wiley-Blackwell. - 0020-7136 .- 1097-0215. ; 133:2, s. 495-504
  • Journal article (peer-reviewed)abstract
    • It has been hypothesized that a high intake of dairy protein may increase prostate cancer risk by increasing the production of insulin-like growth factor 1 (IGF-1). Several single nucleotide polymorphisms (SNPs) have been weakly associated with circulating concentrations of IGF-1 and IGF binding protein 3 (IGFBP-3), but none of these SNPs was associated with risk of prostate cancer. We examined whether an association between 16 SNPs associated with circulating IGF-1 or IGFBP-3 concentrations and prostate cancer exists within subgroups defined by dietary protein intake in 5,253 cases and 4,963 controls of European ancestry within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). The BPC3 includes nested casecontrol studies within large North-American and European cohorts. Per-allele odds ratios for prostate cancer for the SNPs were compared across tertiles of protein intake, which was expressed as the percentage of energy derived from total, animal, dairy or plant protein sources, using conditional logistic regression models. Total, animal, dairy and plant protein intakes were significantly positively associated with blood IGF-1 (p<0.01), but not with IGFBP-3 concentrations (p>0.10) or with risk of prostate cancer (p>0.20). After adjusting for multiple testing, the SNP-prostate cancer associations did not differ by intakes of protein, although two interactions by intake of plant protein were of marginal statistical significance [SSTR5 (somatostatin receptor 5)-rs197056 (uncorrected p for interaction, 0.001); SSTR5-rs197057 (uncorrected p for interaction, 0.002)]. We found no strong evidence that the associations between 16 IGF pathway SNPs and prostate cancer differed by intakes of dietary protein.
  •  
44.
  • Tsilidis, Konstantinos K., et al. (author)
  • Interactions Between Genome-wide Significant Genetic Variants and Circulating Concentrations of Insulin-like Growth Factor 1, Sex Hormones, and Binding Proteins in Relation to Prostate Cancer Risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium
  • 2012
  • In: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 175:9, s. 926-935
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. There is limited information on the mechanistic basis of these associations, particularly about whether they interact with circulating concentrations of growth factors and sex hormones, which may be important in prostate cancer etiology. Using conditional logistic regression, the authors compared per-allele odds ratios for prostate cancer for 39 GWAS-identified SNPs across thirds (tertile groups) of circulating concentrations of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), testosterone, androstenedione, androstanediol glucuronide, estradiol, and sex hormone-binding globulin (SHBG) for 3,043 cases and 3,478 controls in the Breast and Prostate Cancer Cohort Consortium. After allowing for multiple testing, none of the SNPs examined were significantly associated with growth factor or hormone concentrations, and the SNP-prostate cancer associations did not differ by these concentrations, although 4 interactions were marginally significant (MSMB-rs10993994 with androstenedione (uncorrected P = 0.008); CTBP2-rs4962416 with IGFBP-3 (uncorrected P = 0.003); 11q13.2-rs12418451 with IGF-1 (uncorrected P = 0.006); and 11q13.2-rs10896449 with SHBG (uncorrected P = 0.005)). The authors found no strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of IGF-1, sex hormones, or their major binding proteins.
  •  
45.
  • Yeager, Meredith, et al. (author)
  • Identification of a new prostate cancer susceptibility locus on chromosome 8q24.
  • 2009
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 1055-7
  • Journal article (peer-reviewed)abstract
    • We report a genome-wide association study in 10,286 cases and 9,135 controls of European ancestry in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. We identify a new association with prostate cancer risk on chromosome 8q24 (rs620861, P = 1.3 x 10(-10), heterozygote OR = 1.17, 95% CI 1.10-1.24; homozygote OR = 1.33, 95% CI 1.21-1.45). This defines a new locus associated with prostate cancer susceptibility on 8q24.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-45 of 45
Type of publication
journal article (45)
Type of content
peer-reviewed (45)
Author/Editor
Chanock, Stephen J (36)
Schumacher, Fredrick ... (35)
Haiman, Christopher ... (34)
Kraft, Peter (30)
Le Marchand, Loïc (30)
Berndt, Sonja I (29)
show more...
Albanes, Demetrius (28)
Giles, Graham G (28)
Riboli, Elio (20)
Henderson, Brian E (19)
Travis, Ruth C (18)
Brenner, Hermann (18)
Zheng, Wei (18)
Chang-Claude, Jenny (17)
Kolonel, Laurence N (17)
Khaw, Kay-Tee (16)
Wolk, Alicja (16)
Hoover, Robert N. (16)
Gapstur, Susan M (15)
Severi, Gianluca (15)
Trichopoulos, Dimitr ... (15)
Weinstein, Stephanie ... (15)
Stevens, Victoria L (14)
Virtamo, Jarmo (14)
Kaaks, Rudolf (13)
Conti, David V (13)
Peters, Ulrike (13)
Diver, W Ryan (13)
Gaziano, J Michael (13)
Ma, Jing (13)
White, Emily (12)
Bueno-de-Mesquita, H ... (12)
Canzian, Federico (12)
Easton, Douglas F. (12)
Tangen, Catherine M (11)
Thibodeau, Stephen N (11)
Hopper, John L. (11)
Southey, Melissa C. (11)
Pharoah, Paul D. P. (11)
Cancel-Tassin, Geral ... (10)
Penney, Kathryn L (10)
Neuhausen, Susan L (10)
Gago Dominguez, Manu ... (10)
Rennert, Gad (10)
Visvanathan, Kala (10)
Johansson, Mattias (10)
Lindblom, Annika (10)
Offit, Kenneth (10)
Shu, Xiao-Ou (10)
Giovannucci, Edward (10)
show less...
University
Umeå University (28)
Karolinska Institutet (28)
Uppsala University (17)
Lund University (8)
Örebro University (3)
University of Gothenburg (1)
show more...
Linköping University (1)
Högskolan Dalarna (1)
show less...
Language
English (45)
Research subject (UKÄ/SCB)
Medical and Health Sciences (40)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view