SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sciot R) "

Search: WFRF:(Sciot R)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • da Costa, Cristiana E. T., et al. (author)
  • No Genomic Aberrations in Langerhans Cell Histiocytosis as Assessed by Diverse Molecular Technologies
  • 2009
  • In: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 48:3, s. 239-249
  • Journal article (peer-reviewed)abstract
    • The etiology of Langerhans cell histiocytosis (LCH), a disease characterized by uncontrolled proliferation of Langerhans cells, is unknown. Although some believe that LCH is reactive, others support a neoplastic origin. We tested the hypothesis that LCH is neoplastic by investigating potential consistent chromosomal aberrations in LCH cells. We used multiparameter DNA flow cytometry to analyze the DNA ploidy LCH cells in 20 cases, performed karyotype analysis in 31 cases, array-based comparative genomic hybridization (arrayCGH) and single nucleotide polymorphism (SNP) arrays with DNA from flow-sorted CD1a-positive and CD1a-negative cells in 19 cases. Ploidy analysis revealed diploid DNA content in all cases. The karyotype of all patients analyzed was normal, excluding the presence of balanced translocations. ArrayCGH and SNP arrays did not show genome abnormalities. Despite positive TP53 protein immunohistochemical staining, sequencing of exon 5 to 8 of p53 gene showed no alterations in 7 cases. This study strongly suggests that gross chromosomal abnormalities do not cause LCH. Although we cannot exclude cryptic point mutations in as yet unidentified genes, this study of 72 LCH cases shows that LCH may be the result of restricted oligoclonal stimulation rather than unlimited neoplastic proliferation. (c) 2008 Wiley-Liss, Inc.
  •  
3.
  •  
4.
  •  
5.
  • Mertens, Fredrik, et al. (author)
  • Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene
  • 2005
  • In: Laboratory Investigation. - : Elsevier BV. - 1530-0307 .- 0023-6837. ; 85:3, s. 408-415
  • Journal article (peer-reviewed)abstract
    • Low-grade fibromyxoid sarcoma (LGFMS) is an indolent, late-metastasizing malignant soft-tissue tumor that is often mistaken for either more benign or more malignant tumor types. Cytogenetic analyses have identified a recurrent balanced translocation t(7;16) (q32-34;p11), later shown by molecular genetic approaches to result in a FUS/CREB3L2 fusion gene. Whereas preliminary studies suggest that this gene rearrangement is specific for LGFMS, its incidence in this tumor type and the possible existence of variant fusion genes have not yet been addressed. For this purpose, a series of potential LGFMS were obtained from nine different soft-tissue tumor centres and subjected to molecular analysis as well as careful histopathologic review. Reverse transcriptase-polymerase chain reaction analysis disclosed a FUS/CREB3L2 fusion transcript in 22 of the 23 (96%) cases that remained classified as LGFMS after the histologic re-evaluation and from which RNA of sufficient quality could be extracted, whereas none of the cases that were classified as other tumor types was fusion-positive. In one of the tumors with typical LGFMS appearance, we found that FUS was fused to the CREB3L1 gene instead of CREB3L2. The proteins encoded by these genes both belong to the same basic leucine-zipper family of transcription factors, and display extensive sequence homology in their DNA-binding domains. Thus, it is expected that the novel FUS/CREB3L1 chimera will have a similar impact at the cellular level as the much more common FUS/CREB3L2 fusion protein. Taken together, the results indicate that virtually all LGFMS are characterized by a chimeric FUS/CREB3L2 gene, and that rare cases may display a variant FUS/CREB3L1 fusion.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Tallini, G, et al. (author)
  • Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group
  • 2002
  • In: Journal of Pathology. - : Wiley. - 0022-3417. ; 196:2, s. 194-203
  • Journal article (peer-reviewed)abstract
    • The evaluation of chondroid lesions requires full integration of clinical, radiographic, and pathological data; tumour typing is often a challenge for the diagnostic pathologist. Although a variety of chromosomal abnormalities have been documented in chondroid lesions, the potential usefulness of cytogenetic analysis remains unclear. This study has critically reviewed and analysed 117 karyotyped samples from 100 patients with cartilaginous and chordoid tumours. Cases were selected based on successful chromosomal analysis and adequacy of clinical, radiographic, and pathological information. To ensure objective evaluation, the cytogenetic results were correlated in a double-blind setting with consensus diagnoses independently determined on each case, after complete review of the histological, radiographic, and clinical findings. Karyotypic aberrations were identified in 41/92 cartilaginous tumours (5/11 osteochondromas, 2/3 chondromyxoid fibromas, 0/4 chondroblastomas, 11/29 chondromas, 0/3 chondroid tumours of undetermined malignant potential, 22/40 chondrosarcomas and 1/2 miscellaneous cartilaginous lesions) and 5/8 chordomas. Complex karyotypic changes were a feature of malignant tumours (chondrosarcoma and chordoma) and of chondrosarcoma among cartilaginous tumours, where they correlated with high tumour grade. Among primary well-differentiated cartilaginous lesions of bone, the finding of an abnormal karyotype was consistently associated with a grade 1 chondrosarcoma diagnosis. Among karyotypically abnormal cartilaginous tumours, loss of distal 8q was associated with osteochondroma, +5 with synovial chondroma/chondromatosis and parosteal or soft tissue chondroma, alterations of chromosome arm 6q with chondromyxoid fibroma, +7 with bone chondrosarcoma, and 17pl alterations with grade 3 chondrosarcoma. Alterations involving 12q13 characterized synovial chondroma/chondromatosis in the chondroma group and myxoid chondrosarcoma of bone in the chondrosarcoma group. In conclusion, cytogenetic abnormalities in chondroid lesions are common and are not randomly distributed. They are associated with malignancy/tumour grade as well as with specific diagnoses in many cases, and can therefore be of potential value for tumour typing.
  •  
11.
  • Arbajian, Elsa, et al. (author)
  • In-depth genetic analysis of sclerosing epithelioid fibrosarcoma reveals recurrent genomic alterations and potential treatment targets
  • 2017
  • In: Clinical Cancer Research. - 1078-0432. ; 23:23, s. 7426-7434
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Sclerosing epithelioid fibrosarcoma (SEF) is a highly aggressive soft tissue sarcoma closely related to low-grade fibromyxoid sarcoma (LGFMS). Some tumors display morphological characteristics of both SEF and LGFMS, so called hybrid SEF/LGFMS. Despite the overlap of gene fusion variants between these two tumor types, SEF is much more aggressive. The present study aimed to further characterize SEF and hybrid SEF/LGFMS genetically in order to better understand the role of the characteristic fusion genes and possible additional genetic alterations in tumorigenesis.EXPERIMENTAL DESIGN: We performed whole exome sequencing, single nucleotide polymorphism (SNP) array analysis, RNA-sequencing (RNA-seq), global gene expression analyses and/or IHC on a series of 13 SEFs and 6 hybrid SEF/LGFMS. We also expressed the FUS-CREB3L2 and EWSR1-CREB3L1 fusion genes conditionally in a fibroblast cell line; these cells were subsequently analyzed by RNA-seq and expression of the CD24 protein was assessed by FACS analysis.RESULTS: The SNP array analysis detected a large number of structural aberrations in SEF and SEF/LGFMS, many of which were recurrent, notably DMD microdeletions. RNA-seq identified FUS-CREM and PAX5-CREB3L1 as alternative fusion genes in one SEF each. CD24 was strongly upregulated, presumably a direct target of the fusion proteins. This was further confirmed by the gene expression analysis and FACS analysis on Tet-On 3G cells expressing EWSR1-CREB3L1.CONCLUSIONS: While gene fusions are the primary tumorigenic events in both SEF and LGFMS, additional genomic changes explain the differences in aggressiveness and clinical outcome between the two types. CD24 and DMD constitute potential therapeutic targets.
  •  
12.
  •  
13.
  •  
14.
  • Ladanyi, Marc, et al. (author)
  • The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25
  • 2001
  • In: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 20:1, s. 48-57
  • Journal article (peer-reviewed)abstract
    • Alveolar soft part sarcoma (ASPS) is an unusual tumor with highly characteristic histopathology and ultrastructure, controversial histogenesis, and enigmatic clinical behavior. Recent cytogenetic studies have identified a recurrent der(17) due to a non-reciprocal t(X;17)(p11.2;q25) in this sarcoma. To define the interval containing the Xp11.2 break, we first performed FISH on ASPS cases using YAC probes for OATL1 (Xp11.23) and OATL2 (Xp11.21), and cosmid probes from the intervening genomic region. This localized the breakpoint to a 160 kb interval. The prime candidate within this previously fully sequenced region was TFE3, a transcription factor gene known to be fused to translocation partners on 1 and X in some papillary renal cell carcinomas. Southern blotting using a TFE3 genomic probe identified non-germline bands in several ASPS cases, consistent with rearrangement and possible fusion of TFE3 with a gene on 17q25. Amplification of the 5' portion of cDNAs containing the 3' portion of TFE3 in two different ASPS cases identified a novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion). Reverse transcriptase PCR using a forward primer from ASPL and a TFE3 exon 4 reverse primer detected an ASPL-TFE3 fusion transcript in all ASPS cases (12/12: 9 type 1, 3 type 2), establishing the utility of this assay in the diagnosis of ASPS. Using appropriate primers, the reciprocal fusion transcript, TFE3-ASPL, was detected in only one of 12 cases, consistent with the non-reciprocal nature of the translocation in most cases, and supporting ASPL-TFE3 as its oncogenically significant fusion product. ASPL maps to chromosome 17, is ubiquitously expressed, and matches numerous ESTs (Unigene cluster Hs.84128) but no named genes. The ASPL cDNA open reading frame encodes a predicted protein of 476 amino acids that contains within its carboxy-terminal portion of a UBX-like domain that shows significant similarity to predicted proteins of unknown function in several model organisms. The ASPL-TFE3 fusion replaces the N-terminal portion of TFE3 by the fused ASPL sequences, while retaining the TFE3 DNA-binding domain, implicating transcriptional deregulation in the pathogenesis of this tumor, consistent with the biology of several other translocation-associated sarcomas.
  •  
15.
  • Mertens, Fredrik, et al. (author)
  • The t(X;6) in subungual exostosis results in transcriptional deregulation of the gene for insulin receptor substrate 4.
  • 2011
  • In: International Journal of Cancer. - : Wiley. - 0020-7136. ; 128, s. 487-491
  • Journal article (peer-reviewed)abstract
    • Subungual exostosis is a benign bone- and cartilage-forming tumor known to harbour a pathognomonic t(X;6)(q22;q13-14). Using global gene expression analysis and quantitative real-time PCR we could show that this translocation results in increased expression of the IRS4 gene, presumably due to disruption and/or exchange of regulatory sequences with the translocation partner, the COL12A1 gene. A corresponding deregulation at the protein level could be demonstrated in primary cell cultures using a combination of fluorescence in situ hybridization and immunostaining. As the t(X;6) usually is the sole cytogenetic aberration in subungual exostosis, the deregulated expression of IRS4 is likely to be pathogenetically essential. The exact role of IRS4 is still poorly investigated, but IRS proteins are known to act as mediators of signalling from receptors, such as the insulin and insulin-like growth factor 1 receptors, and thus have an important effect on cell growth and survival. (c) 2010 UICC.
  •  
16.
  •  
17.
  • Panagopoulos, I, et al. (author)
  • Clinical impact of molecular and cytogenetic findings in synovial sarcoma
  • 2001
  • In: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 31:4, s. 72-362
  • Journal article (peer-reviewed)abstract
    • Synovial sarcoma is an aggressive soft-tissue tumor that accounts for up to 10% of soft-tissue sarcomas. Cytogenetically, synovial sarcoma is characterized by the t(X;18)(p11;q11), found in more than 95% of the tumors. This translocation results in rearrangements of the SYT gene in 18q11 and one of the SSX1, SSX2, or SSX4 genes in Xp11, creating a SYT/SSX1, SYT/SSX2, or SYT/SSX4 chimeric gene. It has been shown that patients with SYT/SSX1 fusion genes have a shorter metastasis-free survival than do patients with SYT/SSX2. Previous studies have also suggested that clonal evolution may be associated with disease progression. In the present study, RT-PCR analysis showed that all 64 examined synovial sarcomas from 54 patients had SYT-SSX chimeric genes. SYT/SSX1 was found in 40 tumors from 33 patients, SYT/SSX2 in 23 tumors from 20 patients, and SYT/SSX4 in one case. Two patients had variant SYT/SSX2 transcripts, with 57 bp and 141 bp inserts, respectively, between the known SYT and SSX2 sequences. Patients with tumors with SYT/SSX1 fusions had a higher risk of developing metastases compared to those with SYT/SSX2 fusions (P = 0.01). The reciprocal transcripts SSX1/SYT and SSX2/SYT were detected using nested PCR in 11 of the 40 samples with SYT/SSX1 and 5 of the 23 samples with SYT/SSX2, respectively. Among 20 blood samples, SYT/SSX1 and SYT/SSX2 were detected in one sample each. The t(X;18), or variants thereof, was found cytogenetically in all patients but three. Among 32 primary tumors, the t(X;18) or a variant translocation was the sole anomaly in 10. In contrast, of the seven metastatic lesions that were investigated prior to radiotherapy, only one had a t(X;18) as the sole anomaly; all other tumors displayed complex karyotypes. Cytogenetic complexity in primary tumors was, however, not associated with the development of metastases. Tumors with SYT/SSX2 less often (4/12 vs. 7/15) showed complex karyotypes than did tumors with SYT/SSX1, but the difference was not significant. Combining cytogenetic complexity and transcript data, we found that the subgroup of patients with tumors showing simple karyotypes and SYT/SSX2 fusion had the best clinical outcome (2/8 patients developed metastases), and those with tumors showing complex karyotypes together with SYT/SSX1 fusion the worst (6/7 patients developed metastases). This corresponded to 5-year metastasis-free survival rates of 0.58 and 0.0, respectively (P = 0.02).
  •  
18.
  • Storlazzi, CT, et al. (author)
  • Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic delineation of the tumor-specific translocation t(X;6)(q13-14;q22)
  • 2006
  • In: International Journal of Cancer. - : Wiley. - 0020-7136. ; 118:8, s. 1972-1976
  • Journal article (peer-reviewed)abstract
    • Subungual exostosis is a benign bone- and cartilage-producing tumor occurring in the hands and feet of children and young adults. The recent identification of a recurrent chromosomal translocation t(X;6)(q24-q26;q15-21) in short-term-cultured tumor cells strongly suggests that subungual exostosis is a neoplastic lesion caused by rearrangement of genes in the two breakpoints. To identify the genes that are critical for neoplastic transformation, we have studied five subungual exostoses by interphase or metaphase FISH. The results of these analyses demonstrated a clustering of the breakpoints to the regions harboring the collagen genes COL12A1 and COL4A5 in chromosome bands 6q13-14 and Xq22, respectively. Furthermore, in all but one case, these two genes were shown to colocalize on the derivative chromosomes X and 6, strongly suggesting that at least one of them is consistently involved in the formation of a chimeric fusion gene or in the exchange of regulatory sequences. Because collagen molecules are important for tissue remodeling during physiologic growth and differentiation, both COL12A1 and COL4A5 constitute good candidate target genes in the pathogenesis of subungual exostosis. Further investigations on the transcript level are required to elucidate the functional outcome of the t(X;6) translocation in subungual exostoses. (c) 2005 Wiley-Liss, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view