SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shao Jingchen 1989) "

Search: WFRF:(Shao Jingchen 1989)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Risal, Sanjiv, et al. (author)
  • MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice
  • 2017
  • In: Cell Discovery. - : Springer Science and Business Media LLC. - 2056-5968. ; 3
  • Journal article (peer-reviewed)abstract
    • In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75-8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (a subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis.
  •  
2.
  • Shao, Jingchen, 1989, et al. (author)
  • p27(KIP1) and PTEN cooperate in myeloproliferative neoplasm tumor suppression in mice
  • 2016
  • In: Experimental Hematolgy & Oncology. - : Springer Science and Business Media LLC. - 2162-3619. ; 5
  • Journal article (peer-reviewed)abstract
    • PTEN acts as a phosphatase for PIP3 and negatively regulates the PI3K/AKT pathway, and p27(KIP1) is a cyclin-dependent kinase inhibitor that regulates the G1 to S-phase transition by binding to and regulating the activity of cyclin-dependent kinases. Genetic alterations of PTEN or CDKN1B (p27(KIP1)) are common in hematological malignancies. To better understand how mutations in these two genes might cooperate in leukemogenesis, we inactivated both genes in the hematological compartment in mice. Here, we show that the combined inactivation of Pten and Cdkn1b results in a more severe myeloproliferative neoplasm phenotype associated with lower hemoglobin, enlarged spleen and liver, and shorter lifespan compared to inactivation of Pten alone. More severe anemia and increased myeloid infiltration and destruction of the spleen contributed to the earlier death of these mice, and elevated p-AKT, cyclin D1, and cyclin D3 might contribute to the development of this phenotype. In conclusion, PTEN and p27(KIP1) cooperate in tumor suppression in the hematological compartment.
  •  
3.
  • Tu, Zhaowei, et al. (author)
  • Speedy A-Cdk2 binding mediates initial telomere-nuclear envelope attachment during meiotic prophase I independent of Cdk2 activation
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:3, s. 592-597
  • Journal article (peer-reviewed)abstract
    • Telomere attachment to the nuclear envelope (NE) is a prerequisite for chromosomemovement duringmeiotic prophase I that is required for pairing of homologous chromosomes, synapsis, and homologous recombination. Here we show that Speedy A, a noncanonical activator of cyclin-dependent kinases (Cdks), is specifically localized to telomeres in prophase I male and female germ cells in mice, and plays an essential role in the telomere-NE attachment. Deletion of Spdya in mice disrupts telomere-NE attachment, and this impairs homologous pairing and synapsis and leads to zygotene arrest in male and female germ cells. In addition, we have identified a telomere localization domain on Speedy A covering the distal N terminus and the Cdk2-binding Ringo domain, and this domain is essential for the localization of Speedy A to telomeres. Furthermore, we found that the binding of Cdk2 to Speedy A is indispensable for Cdk2' s localization on telomeres, suggesting that Speedy A and Cdk2 might be the initial components that are recruited to the NE for forming the meiotic telomere complex. However, Speedy A-Cdk2-mediated telomere-NE attachment is independent of Cdk2 activation. Our results thus indicate that Speedy A and Cdk2 might mediate the initial telomere-NE attachment for the efficient assembly of the telomere complex that is essential for meiotic prophase I progression.
  •  
4.
  •  
5.
  • Zhang, Qianting, et al. (author)
  • Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis.
  • 2018
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 1
  • Journal article (peer-reviewed)abstract
    • During meiosis, formation of crossovers-the physical links that ensure the segregation of homologous chromosomes-requires a group of evolutionarily conserved ZMM proteins. In budding yeast, three ZMM proteins, Zip2, Spo16, and Zip4, form a trimeric complex to bind recombination intermediates and promote crossover formation. Here, we show that MZIP2 is the mammalian ortholog of Zip2. Complete ablation of MZIP2 in mice caused sterility in both males and females, as well as defects in repairing meiotic DNA double-strand breaks. MZIP2 forms discrete foci on chromosomes axes, and is required for the localization of TEX11 (mammalian Zip4 ortholog) and another ZMM protein, MSH4, to form crossover-prone recombination intermediates. As a consequence, formation of crossovers is abolished and formation of synaptonemal complex is incomplete in MZIP2-null meiocytes, resulting in meiosis arrest at a zygotene-like stage. Our results suggest that the processing of early recombination intermediates toward mature crossovers is dependent on MZIP2.
  •  
6.
  • Zhang, Qianting, et al. (author)
  • Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Spermatogenesis is tightly regulated by ubiquitination and proteasomal degradation, especially during spermiogenesis, in which histones are replaced by protamine. However, the functions of proteasomal activity in meiosis I and II remain elusive. Here, we show that PSMA8-associated proteasomes are essential for the degradation of meiotic proteins and the progression of meiosis I during spermatogenesis. PSMA8 is expressed in spermatocytes from the pachytene stage, and assembles a type of testis-specific core proteasome. Deletion of PSMA8 decreases the abundance of proteasome in testes. Meiotic proteins that are normally degraded at late prophase I, such as RAD51 and RPA1, remain stable in PSMA8-deleted spermatocytes. Moreover, PSMA8-null spermatocytes exhibit delayed M-phase entry and are finally arrested at this stage, resulting in male infertility. However, PSMA8 is neither expressed nor required for female meiotic progression. Thus, meiosis I progression in spermatogenesis, particularly entry into and exit from M-phase, requires the proteasomal activity of PSMA8-associated proteasomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view