SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sharma Ankur) "

Search: WFRF:(Sharma Ankur)

  • Result 1-50 of 94
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Stanaway, Jeffrey D., et al. (author)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Journal article (peer-reviewed)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
3.
  • Aartsen, M. G., et al. (author)
  • IceCube-Gen2 : the window to the extreme Universe
  • 2021
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:6
  • Journal article (peer-reviewed)abstract
    • The observation of electromagnetic radiation from radio to gamma-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (10(15) eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
  •  
4.
  • Abbasi, R., et al. (author)
  • A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory first observed a diffuse flux of high energy astrophysical neutrinos in 2013. Since then, this observation has been confirmed in multiple detection channels such as high energy starting events, cascades, and through-going muon tracks. Combining these event selections into a high statistics global fit of 10 years of IceCube's neutrino data could strongly improve the understanding of the diffuse astrophysical neutrino flux: challenging or confirming the simple unbroken power-law flux model as well as the astrophysical neutrino flux composition. One key component of such a combined analysis is the consistent modelling of systematic uncertainties of different event selections. This can be achieved using the novel SnowStorm Monte Carlo method which allows constraints to be placed on multiple systematic parameters from a single simulation set. We will report on the status of a new combined analysis of through-going muon tracks and cascades. It is based on a consistent all flavor neutrino signal and background simulation using, for the first time, the SnowStorm method to analyze IceCube's high-energy neutrino data. Estimated sensitivities for the energy spectrum of the diffuse astrophysical neutrino flux will be shown.
  •  
5.
  • Abbasi, R., et al. (author)
  • A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory
  • 2021
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 16:7
  • Journal article (peer-reviewed)abstract
    • Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.
  •  
6.
  • Abbasi, R., et al. (author)
  • A model-independent analysis of neutrino flares detected in IceCube from X-ray selected blazars
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • Blazars are among the most powerful steady sources in the Universe. Multi-messenger searches for blazars have traditionally focused on their gamma-ray emission, which can be produced simultaneously with neutrinos in photohadronic interactions. However, X-ray data can be equally vital to constrain the SED of these sources, since the hadronically co-produced gamma-rays could get absorbed by the ambient photon fields and cascade down to X-ray energies before escaping. In this work, we present the outline for an untriggered, time-dependent analysis of neutrino flares from the direction of X-ray selected blazars using 10 years of IceCube data. A binomial test will be performed on the population to reveal if a subcategory of sources has statistically significant emission. The sources are selected from RomaBZCat, and the p-values and best-fit flare parameters are obtained for each source using the method of unbinned likelihood maximisation.
  •  
7.
  • Abbasi, R., et al. (author)
  • A New Search for Neutrino Point Sources with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory, deployed inside the deep glacial ice at the South Pole, is the largest neutrino telescope in the world. While eight years have passed since IceCube discovered a diffuse flux of high-energy astrophysical neutrinos, the sources of the vast majority of these neutrinos remain unknown. Here, we present a new search for neutrino point sources that improves the accuracy of the statistical analysis, especially in the low energy regime. We replaced the usual Gaussian approximations of IceCube's point spread function with precise numerical representations, obtained from simulations, and combined them with new machine learning-based estimates of event energies and angular errors. Depending on the source properties, the new analysis provides improved source localization, flux characterization and thereby discovery potential (by up to 30%) over previous works. The analysis will be applied to IceCube data that has been recorded with the full 86-string detector configuration from 2011 to 2020 and includes improved detector calibration.
  •  
8.
  • Abbasi, R., et al. (author)
  • A next-generation optical sensor for IceCube-Gen2
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • For the in-ice component of the next generation neutrino observatory at the South Pole, IceCube-Gen2, a new sensor module is being developed, which is an evolution of the D-Egg and mDOM sensors developed for the IceCube Upgrade. The sensor design features up to 18 4-inch PMTs distributed homogeneously in a borosilicate glass pressure vessel. Challenges arise for the mechanical design from the tight constraints on the bore hole diameter (which will be 2 inches smaller than for IceCube Upgrade) and from the close packing of the PMTs. The electronics design must meet the space constraints posed by the mechanical design as well as the power consumption and cost considerations from over 10,000 optical modules being deployed. This contribution presents forward-looking solutions to these design considerations. Prototype modules will be installed and integrated in the IceCube Upgrade.
  •  
9.
  • Abbasi, R., et al. (author)
  • A novel microstructure-based model to explain the IceCube ice anisotropy
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory instruments about 1 km(3) of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light of charged relativistic particles. Most of IceCube's science goals rely heavily on an ever more precise understanding of the optical properties of the instrumented ice. A curious light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow of the ice. Having recently identified curved photon trajectories resulting from asymmetric light diffusion in the birefringent polycrystalline microstructure of the ice as the most likely underlying cause of this effect, work is now ongoing to optimize the model parameters (effectively deducing the average crystal size and shape in the detector). We present the parametrization of the birefringence effect in our photon propagation simulation, the fitting procedures and results as well as the impact of the new ice model on data-MC agreement.
  •  
10.
  • Abbasi, R., et al. (author)
  • A Posterior Analysis on IceCube Double Pulse Tau Neutrino Candidates
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory at the South Pole detects Cherenkov light emitted by charged secondary particles created by primary neutrino interactions. Double pulse waveforms can arise from charged current interactions of astrophysical tau neutrinos with nucleons in the ice and the subsequent decay of tau leptons. The previous 8-year tau double pulse analysis found three tau neutrino candidate events. Among them, the most promising one observed in 2014 is located very near the dust layer in the middle of the detector. A posterior analysis on this event will be presented in this paper, using a new ice model treatment with continuously varying nuisance parameters to do the targeted Monte Carlo re-simulation for tau and other background neutrino ensembles. The impact of different ice models on the expected signal and background statistics will also be discussed.
  •  
11.
  • Abbasi, R., et al. (author)
  • A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 946:2
  • Journal article (peer-reviewed)abstract
    • This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory's previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows.
  •  
12.
  • Abbasi, R., et al. (author)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Journal article (peer-reviewed)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
13.
  • Abbasi, R., et al. (author)
  • A Search for Neutrinos from Decaying Dark Matter in Galaxy Clusters and Galaxies with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The observed dark matter abundance in the Universe can be explained with non-thermal, heavy dark matter models. In order for dark matter to still be present today, its lifetime has to far exceed the age of the Universe. In these scenarios, dark matter decay can produce highly energetic neutrinos, along with other Standard Model particles. To date, the IceCube Neutrino Observatory is the world's largest neutrino telescope, located at the geographic South Pole. In 2013, the IceCube collaboration reported the first observation of high-energy astrophysical neutrinos. Since then, IceCube has collected a large amount of astrophysical neutrino data with energies up to tens of PeV, allowing us to probe the heavy dark matter models using neutrinos. We search the IceCube data for neutrinos from decaying dark matter in galaxy clusters and galaxies. The targeted dark matter masses range from 10 TeV to 10 PeV. In this contribution, we present the method and sensitivities of the analysis.
  •  
14.
  • Abbasi, R., et al. (author)
  • A time-independent search for neutrinos from galaxy clusters with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Clusters of galaxies - with their turbulent magnetic fields and abundant matter content - are a promising class of potential neutrino sources. Cosmic rays accelerated within the large-scale shocks, Active GalacticNuclei (AGN), or both can be confined in galaxy clusters over cosmological timescales and produce a steady flux of neutrinos in secondary interactions. The IceCube Neutrino Observatory has detected a diffuse flux of high-energy astrophysical neutrinos. After ten years of operations, however, the origin of this flux remains largely unconstrained. In this work, we perform a stacked search for neutrinos, using a population of over one thousand galaxy clusters detected by the Planck Satellite via the Sunyaev-Zeldovich (SZ) effect up to a redshift z = 1. We present the first results on the contribution of galaxy clusters to the diffuse neutrino flux and discuss the implications for various models of cosmic-ray acceleration in large-scale structures.
  •  
15.
  • Abbasi, R., et al. (author)
  • A Time-Variability Test for Candidate Neutrino Sources Observed with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Recent studies with IceCube have shown signs of a time-integrated flux of astrophysical neutrinos from point-like sources such as TXS 0506+056 and NGC 1068. Time-variability of this neutrino emission from TXS 0506+056 has been studied extensively by assuming a temporal profile of the possible flare(s) or searching for temporal neutrino correlation with other electromagnetic counterparts. However, experimental evidence of the temporal profile of an astrophysical neutrino signal, besides the TXS 0506+056 source, remains lacking. In this study, we present a new KS-test based method for investigating time-variability. This new method complements the existing time-dependent search methods with a test for arbitrary time-variability, independent of an assumed temporal profile or electromagnetic counterpart. Additionally, this method provides a diagnostic tool for characterizing point-like source candidates in IceCube by distinguishing variable from steady neutrino emission and we show results of applying this method to a small catalog of candidate blazars.
  •  
16.
  • Abbasi, R., et al. (author)
  • All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
  • 2021
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 104:7
  • Journal article (peer-reviewed)abstract
    • We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained.
  •  
17.
  • Abbasi, R., et al. (author)
  • Analysis framework for Multi-messenger Astronomy with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • Combining observational data from multiple instruments for multi-messenger astronomy can be challenging due to the complexity of the instrument response functions and likelihood calculation. We introduce a python-based unbinned-likelihood analysis package called i3mla (IceCube Maximum Likelihood Analysis). i3mla is designed to be compatible with the Multi-Mission Maximum Likelihood (3ML) framework, which enables multi-messenger astronomy analyses by combining the likelihood across different instruments. By making it possible to use IceCube data in the 3ML framework, we aim to facilitate the use of neutrino data in multi-messenger astronomy. In this work we illustrate how to use the i3mla package with 3ML and present preliminary sensitivities using the i3mla package and 3ML through a joint-fit with HAWC Public dataset.
  •  
18.
  • Abbasi, R., et al. (author)
  • Camera Calibration for the IceCube Upgrade and Gen2
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • An upgrade to the IceCube Neutrino Telescope is currently under construction. For this IceCube Upgrade, seven new strings will be deployed in the central region of the 86 string IceCube detector to enhance the capability to detect neutrinos in the GeV range. One of the main science objectives of the IceCube Upgrade is an improved calibration of the IceCube detector to reduce systematic uncertainties related to the optical properties of the ice. We have developed a novel optical camera and illumination system that will be part of 700 newly developed optical modules to be deployed with the IceCube Upgrade. A combination of transmission and reflection photographic measurements will be used to measure the optical properties of bulk ice between strings and refrozen ice in the drill hole, to determine module positions, and to survey the local ice environments surrounding the sensor module. In this contribution we present the production design, acceptance testing, and plan for post-deployment calibration measurements with the camera system.
  •  
19.
  • Abbasi, R., et al. (author)
  • Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory has observed a diffuse flux of astrophysical neutrinos with energies from TeV to a few PeV. Recent IceCube analyses have limited sensitivity to PeV neutrinos because upward-going neutrino fluxes are attenuated by the Earth while the Extremely High Energy (EHE) result targets cosmogenic neutrinos only above 10 PeV. In this work, we present a new event selection that fills the gap between 1 PeV and 10 PeV. This sample is obtained by selecting high-energy down-going through-going tracks from 8 years of data. To reduce the atmospheric muon backgrounds and achieve a high signal-to-background ratio, we combine two techniques. The first technique selects events with high stochasticity because single muons created by neutrinos lose energy more stochastically than atmospheric muon bundles whose energy losses are smoothened due to large muon multiplicities. The second technique uses the IceTop surface array as a veto of atmospheric background events. To characterize the astrophysical neutrino flux and test the existence of a cut-off in the neutrino energy spectrum at a few PeV, a global fit will be performed by combining this sample with results from the 7-year High Energy Starting Events (HESE) analysis.
  •  
20.
  • Abbasi, R., et al. (author)
  • Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity.In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube.
  •  
21.
  • Abbasi, R., et al. (author)
  • Completing Aganta Kairos : Capturing Metaphysical Time on the Seventh Continent
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • We present an overview of the art project Aganta Kairos (To Fish the Metaphysical Time). This project celebrates the neutrino-the ghost particle-which scientists consider a cosmic messenger and the artist regards as a link between people who care about their relationship to the cosmos and question their origins. The artwork is based on a performance of celebration and seeks to build a human community that encompasses different knowledge domains and interpretations of the universe. This intersection of knowledge is realized during the performance of placing a plaque, held with witnesses, and during subsequent exhibitions. Images, sounds, videos, and sculpture testify to the diversity of approaches to questioning our origins, ranging from traditional western science to ancient shamanism. The sites were selected for their global coverage and, for the South Pole, Mediterranean, and Lake Baikal, their connection to ongoing neutrino experiments. In December 2020, a plaque was installed at the South Pole IceCube Laboratory, the seventh and final site. We provide examples of images and links to additional images and videos.
  •  
22.
  • Abbasi, R., et al. (author)
  • Constraining Non-Standard Dark Matter-Nucleon Interactions with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - : Proceedings of science.
  • Conference paper (peer-reviewed)abstract
    • After scattering off nuclei in the Sun, dark matter particles can be gravitationally captured by the Sun, accumulate in the Sun's core and annihilate into Standard Model particles. Neutrinos originating from these annihilations can be detected by the IceCube Neutrino Observatory, located at the South Pole. Due to the non-observation of these neutrinos, constraints on the standard spin-dependent and spin-independent dark matter-nucleon scattering cross sections have been placed. Based on these constraints, we present upper limits on the coupling constants of the non-relativistic effective theory of dark matter-nucleon interactions, including velocity and momentum dependent interactions.
  •  
23.
  • Abbasi, R., et al. (author)
  • Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 951:1
  • Journal article (peer-reviewed)abstract
    • Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E & GSIM; 100 TeV) neutrino candidate events with moderate to high (& GSIM;30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E (-2.5) neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 x 10(-9) Mpc(-3). This number changes to 3 x 10(-7) Mpc(-3) if number densities instead have no cosmic evolution.
  •  
24.
  • Abbasi, R., et al. (author)
  • Density of GeV muons in air showers measured with IceTop
  • 2022
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 106:3
  • Journal article (peer-reviewed)abstract
    • We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the postLHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV.
  •  
25.
  • Abbasi, R., et al. (author)
  • Deployment of the IceCube Upgrade Camera System in the SPICEcore hole
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • IceCube is a cubic-kilometer scale neutrino telescope located at the geographic South Pole. The detector utilizes the extremely transparent Antarctic ice as a medium for detecting Cherenkov radiation from neutrino interactions. While the optical properties of the glacial ice are generally well modeled and understood, the uncertainties which remain are still the dominant source of systematic uncertainties for many IceCube analyses. A camera and LED system is being built for the IceCube Upgrade that will enable the observation of optical properties throughout the Upgrade array. The SPICEcore hole, a 1.7 km deep ice-core hole located near the IceCube detector, has given the opportunity to test the performance of the camera system ahead of the Upgrade construction. In this contribution, we present the results of the camera and LED system deployment during the 2019/2020 austral summer season as part of a SPICEcore luminescence logger system.
  •  
26.
  • Abbasi, R., et al. (author)
  • Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Upgrade is an extension of the IceCube detector at the geographic South Pole. It consists of seven new strings with novel instrumentation. More than 430 multi-PMT optical modules called "mDOMs", housing 24 3-inch PMTs each, will be produced for the Upgrade. This will require testing and pre-calibration on a short timescale of more than 10,000 PMTs prior to assembly and deployment. We present the design of a PMT testing facility that enables simultaneous testing of roughly 100 PMTs per day at temperatures down to -20 degrees C. The design is implemented at RWTH Aachen University and TU Dortmund University in parallel to achieve a throughput of up to 1,000 PMTs per week. This will enable a steady supply of tested PMTs to the production sites, which is critical for the Upgrade, as well as the future IceCube-Gen2 project.
  •  
27.
  • Abbasi, R., et al. (author)
  • Design, performance, and analysis of a measurement of optical properties of antarctic ice below 400 nm
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCubeNeutrino Observatory, located at the geographic South Pole, is theworld's largest neutrino telescope, instrumenting 1 km(3) of Antarctic ice with 5160 photosensors to detect Cherenkov light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the enlarged detector IceCube-Gen2 several new optical sensor designs are under development. One of these optical sensors, the Wavelength-shifting Optical Module (WOM), uses wavelength-shifting and light-guiding techniques to measure Cherenkov photons in the UV range from 250 nm to 380 nm. In order to understand the potential gains from this new technology, a measurement of the scattering and absorption lengths of UV light was performed in the SPICEcore borehole at the South Pole during the winter seasons of 2018/2019 and 2019/2020. For this purpose, a calibration device with a UV light source and a detector using the wavelength shifting technology was developed. We present the design of the developed calibration device, its performance during the measurement campaigns, and the comparison of data to a Monte Carlo simulation.
  •  
28.
  • Abbasi, R., et al. (author)
  • Development of a scintillation and radio hybrid detector array at the South Pole
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • At the IceCube Neutrino Observatory, a Surface Array Enhancement is planned, consisting of 32 hybrid stations, placed within the current IceTop footprint. This surface enhancement will considerably increase the detection sensitivity to cosmic rays in the 100 TeV to 1 EeV primary energy range, measure the effects of snow accumulation on the existing IceTop tanks and serve as R&D for the possible future large-scale surface array of IceCube-Gen2. Each station has one central hybrid DAQ, which reads out 8 scintillation detectors and 3 radio antennas. The radio antenna SKALA-2 is used in this array due to its low-noise, high amplification and sensitivity in the 70-350 MHz frequency band. Every scintillation detector has an active area of 1.5 m(2) organic plastic scintillators connected by wavelength-shifting fibers, which are connected to a silicon photomultiplier. The signals from the scintillation detectors are integrated and digitized by a local custom electronics board and transferred to the central DAQ. When triggered by the scintillation detectors, the filtered and amplified analog waveforms from the radio antennas are read out and digitized by the central DAQ. A full prototype station has been developed and built and was installed at the South Pole in January 2020. It is planned to install the full array by 2026. In this contribution the hardware design of the array as well as the installation plans will be presented.
  •  
29.
  • Abbasi, R., et al. (author)
  • Direction Reconstruction using a CNN for GeV-Scale Neutrinos in IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory observes neutrinos interacting deep within the South Pole ice. It consists of 5,160 digital optical modules, which are embedded within a cubic kilometer of ice, over depths of 1,450m to 2,450 m. At the lower center of the array is the DeepCore subdetector. Its denser sensor configuration lowers the observable energy threshold to the GeV-scale, facilitating the study of atmospheric neutrino oscillations. The precise reconstruction of neutrino direction is critical in the measurements of oscillation parameters. This work presents a method to reconstruct the zenith angle of GeV-scale events in IceCube by using a convolutional neural network and compares the result to that of the current likelihood-based reconstruction algorithm.
  •  
30.
  • Abbasi, R., et al. (author)
  • Discrimination of muons for mass composition studies of inclined air showers detected with IceTop
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • IceTop, the surface array of IceCube, measures air showers from cosmic rays within the energy range of 1 PeV to a few EeV and a zenith angle range of up to approximate to 36 degrees. This detector array can also measure air showers arriving at larger zenith angles at energies above 20 PeV. Air showers from lighter primaries arriving at the array will produce fewer muons when compared to heavier cosmic-ray primaries. A discrimination of these muons from the electromagnetic component in the shower can therefore allow a measurement of the primary mass. A study to discriminate muons using Monte-Carlo air showers of energies 20-100 PeV and within the zenith angular range of 45 degrees-60 degrees will be presented. The discrimination is done using charge and time-based cuts which allows us to select muon-like signals in each shower. The methodology of this analysis, which aims at categorizing the measured air showers as light or heavy on an event-by-event basis, will be discussed.
  •  
31.
  • Abbasi, R., et al. (author)
  • Every Flare, Everywhere : An All-Sky Untriggered Search for Astrophysical Neutrino Transients Using IceCube Data
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • Recent results from IceCube regarding TXS 0506+056 suggest the presence of neutrino flares that are not temporally coincident with a significant corresponding gamma ray flare. Such flares are particularly difficult to identify, as their presence must be inferred from the temporal distribution of neutrino data alone. Here we present the results of using a novel method to search for all such flares across the entire neutrino sky in 10 years of IceCube data, using both Gaussian and box-shaped flare hypotheses. Unlike for past searches, that looked for only the most significant neutrino flare in the data at a given direction, here we implement an algorithm to combine information from multiple flares associated with a single source candidate. This represents the most detailed description of the neutrino sky to date, providing the location and intensity of all neutrino cluster candidates in both space and time. These results can be used to further constrain potential populations of transient neutrino sources, serving as a complement to existing time-integrated and time-dependent methods.
  •  
32.
  • Abbasi, R., et al. (author)
  • Evidence for neutrino emission from the nearby active galaxy NGC 1068
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6619, s. 538-
  • Journal article (peer-reviewed)abstract
    • A supermassive black hole, obscured by cosmic dust, powers the nearby active galaxy NGC 1068. Neutrinos, which rarely interact with matter, could provide information on the galaxy's active core. We searched for neutrino emission from astrophysical objects using data recorded with the IceCube neutrino detector between 2011 and 2020. The positions of 110 known gamma-ray sources were individually searched for neutrino detections above atmospheric and cosmic backgrounds. We found that NGC 1068 has an excess of 79(-20)(+22) neutrinos at tera-electron volt energies, with a global significance of 4.2 sigma, which we interpret as associated with the active galaxy. The flux of high-energy neutrinos that we measured from NGC 1068 is more than an order of magnitude higher than the upper limit on emissions of tera-electron volt gamma rays from this source.
  •  
33.
  • Abbasi, R., et al. (author)
  • Framework and tools for the simulation and analysis of the radio emission from air showers at IceCube
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing Ltd. - 1748-0221. ; 17:6
  • Journal article (peer-reviewed)abstract
    • The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km(2). Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time-and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.
  •  
34.
  • Abbasi, R., et al. (author)
  • Gravitational Wave Follow-Up Using Low Energy Neutrinos in IceCube DeepCore
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The IceCube DeepCore is a dense infill array of the IceCube Neutrino Observatory at the South Pole. While IceCube is best suited for detecting neutrinos with energies of several 100 GeV and above, DeepCore allows to probe neutrinos with lower energies. We focus on a sample of neutrinos with energies above approximately 10 GeV, which was originally optimised for oscillation experiments. Recently, it has been adapted to enable searches for transient sources of astrophysical neutrinos in the sky. In particular, this low-energy dataset can be used to conduct follow-up searches of gravitational wave transients detected by the LIGO-Virgo instruments. A study of this, which complements IceCube's follow-up of gravitational wave events using highenergy neutrino samples, will be discussed here.
  •  
35.
  • Abbasi, R., et al. (author)
  • IceCube Search for High-Energy Neutrinos from Ultra-Luminous Infrared Galaxies
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • With infrared luminosities LIR ≥ 1012L⊙, Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. They are predominantly powered by starburst regions with star-formation rates ≳ 100 M⊙ yr−1. ULIRGs can also host an active galactic nucleus (AGN). Both the starburst and AGN environments contain plausible hadronic accelerators, making ULIRGs candidate neutrino sources. We present the results of an IceCube stacking analysis searching for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤0.13. While no significant excess of ULIRG neutrinos is found in 7.5 years of IceCube data, upper limits are reported on the neutrino flux from these 75 ULIRGs as well as an extrapolation for the full ULIRG source population. In addition, constraints are provided on models predicting neutrino emission from ULIRGs.
  •  
36.
  • Abbasi, Rasha, et al. (author)
  • IceCube search for neutrinos from GRB 221009A
  • 2023
  • In: Proceedings of 38th International Cosmic Ray Conference (ICRC 2023). - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    •  GRB 221009A is the brightest Gamma Ray Burst (GRB) ever observed. The observed extremelyhigh flux of high and very-high-energy photons provide a unique opportunity to probe the predictedneutrino counterpart to the electromagnetic emission. We have used a variety of methods to searchfor neutrinos in coincidence with the GRB over several time windows during the precursor, promptand afterglow phases of the GRB. MeV scale neutrinos are studied using photo-multiplier ratescalers which are normally used to search for galactic core-collapse supernovae neutrinos. GeVneutrinos are searched starting with DeepCore triggers. These events don’t have directionallocalization, but instead can indicate an excess in the rate of events. 10 GeV - 1 TeV and >TeVneutrinos are searched using traditional neutrino point source methods which take into accountthe direction and time of events with DeepCore and the entire IceCube detector respectively. The>TeV results include both a fast-response analysis conducted by IceCube in real-time with timewindows of T0 − 1 to T0 + 2 hours and T0 ± 1 day around the time of GRB 221009A, as well asan offline analysis with 3 new time windows up to a time window of T0 − 1 to T0 + 14 days, thelongest time period we consider. The combination of observations by IceCube covers 9 ordersof magnitude in neutrino energy, from MeV to PeV, placing upper limits across the range forpredicted neutrino emission.
  •  
37.
  • Abbasi, R., et al. (author)
  • Improved Characterization of the Astrophysical Muon-neutrino Flux with 9.5 Years of IceCube Data
  • 2022
  • In: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 928:1
  • Journal article (peer-reviewed)abstract
    • We present a measurement of the high-energy astrophysical muon-neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of phi(nu mu+(nu) over bar mu)(@ 00TeV) = 1.441(-0.26)(+0.25 )x 10(-18) GeV(-1)cm(-2) s(-1 )sr(-1) and a spectral index gamma(SPL) = 2.37(-0.09)(+0.09), constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.
  •  
38.
  • Abbasi, Rasha, et al. (author)
  • In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
  • 2024
  • In: The Cryosphere. - : Copernicus Publications. - 1994-0416 .- 1994-0424. ; 18:1, s. 75-102
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory instruments about 1 km 3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.
  •  
39.
  • Abbasi, R., et al. (author)
  • Indirect search for dark matter in the Galactic Centre with IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • Even though there are strong astrophysical and cosmological indications to support the existence of dark matter, its exact nature remains unknown. We expect dark matter to produce standard model particles when annihilating or decaying, assuming that it is composed ofWeakly Interacting Massive Particles (WIMPs). These standard model particles could in turn yield neutrinos that can be detected by the IceCube neutrino telescope. The MilkyWay is expected to be permeated by a dark matter halo with an increased density towards its centre. This halo is expected to yield the strongest dark matter annihilation signal at Earth coming from any celestial object, making it an ideal target for indirect searches. In this contribution, we present the sensitivities of an indirect search for dark matter in the Galactic Centre using IceCube data. This low energy dark matter search allows us to cover dark matter masses ranging from 5 GeV to 1 TeV. The sensitivities obtained for this analysis show considerable improvements over previous IceCube results in the considered energy range.
  •  
40.
  • Abbasi, R., et al. (author)
  • LeptonInjector and LeptonWeighter : A neutrino event generator and weighter for neutrino observatories
  • 2021
  • In: Computer Physics Communications. - : Elsevier. - 0010-4655 .- 1879-2944. ; 266
  • Journal article (peer-reviewed)abstract
    • We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.
  •  
41.
  • Abbasi, R., et al. (author)
  • Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 946:1
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.
  •  
42.
  • Abbasi, R., et al. (author)
  • Low energy event reconstruction in IceCube DeepCore
  • 2022
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:9
  • Journal article (peer-reviewed)abstract
    • The reconstruction of event-level information, such as the direction or energy of a neutrino interacting in IceCube DeepCore, is a crucial ingredient to many physics analyses. Algorithms to extract this high level information from the detector's raw data have been successfully developed and used for high energy events. In this work, we address unique challenges associated with the reconstruction of lower energy events in the range of a few to hundreds of GeV and present two separate, state-of-the-art algorithms. One algorithm focuses on the fast directional reconstruction of events based on unscattered light. The second algorithm is a likelihood-based multipurpose reconstruction offering superior resolutions, at the expense of larger computational cost.
  •  
43.
  • Abbasi, R., et al. (author)
  • Measuring total neutrino cross section with IceCube at intermediate energies ( ~100 GeV to a few TeV)
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • Whether studying neutrinos for their own sake or as a messenger particle, neutrino cross sections are critically important for numerous analyses. On the low energy side, measurements from accelerator experiments reach up to a few 100s of GeV. On the high energy side, neutrino-earth absorption measurements extend down to a few TeV. The intermediate energy range has yet to be measured experimentally. This work is made possible by the linear relationship between the event rate and cross section, and will utilize IceCube muon neutrino data collected between 2010 and 2018. An advanced energy reconstruction, tailored to the unique properties of the energy range and using the full description of photon propagation in ice, is applied to an event sample of neutrino-induced through-going muons to performa forward folding analysis.
  •  
44.
  • Abbasi, R., et al. (author)
  • Multi-messenger searches via IceCube's high-energy neutrinos and gravitational-wave detections of LIGO/Virgo
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo's GWTC-2 catalog using IceCube's neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event.
  •  
45.
  • Abbasi, R., et al. (author)
  • Neutrino Education, Outreach, and Communications Activities : Captivating Examples from IceCube
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory at the South Pole has tremendous emotional appeal-the extreme Antarctic environment coupled with the aura of a pioneering experiment that explores the universe in a new way. However, as with most cutting-edge experiments, it is still challenging to translate the exotic, demanding science into accessible language. We present three examples of recent successful education, outreach, and communication activities that demonstrate how we leverage efforts and sustain connections to produce engaging results. First we describe our participation in the PolarTREC program, which pairs researchers with educators to provide deployments in the Antarctic, and how we have sustained relationships with these educators to produce high-quality experiences to reach target audiences even during a pandemic. We then focus on three activities from the past year: a summer enrichment program for high school students that was also modified for a 10-week IceCube after school program, a virtual visit to the South Pole for the ScienceWriters 2020 conference, and a series of short videos in English and Spanish suitable for all ages that explain traveling, living, and working at the South Pole.
  •  
46.
  • Abbasi, R., et al. (author)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Journal article (peer-reviewed)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric vμ, flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (> 10 σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric tem-peratures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's AQUA satellite. For the observed 10% seasonal change of effective atmospheric temperature we measure a 3.5(3)% change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correla-tion of 4.3% as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
47.
  • Abbasi, R., et al. (author)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Journal article (peer-reviewed)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric νμ flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (>10σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric temperatures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA’s AQUA satellite. For the observed 10 % seasonal change of effective atmospheric temperature we measure a 3.5(3) % change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correlation of 4.3 % as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
48.
  • Abbasi, R., et al. (author)
  • Performance of the D-Egg Optical Sensor for the IceCube Upgrade
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high quantum efficient photomultiplier tubes (PMTs), they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitised using ultra-low-power 14-bit ADCs with a sampling frequency of 240 MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200 PE within 10 ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in data acquisition system.
  •  
49.
  • Abbasi, R., et al. (author)
  • Performance studies for a next-generation optical sensor for IceCube-Gen2
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • We present performance studies of a segmented optical module for the IceCube-Gen2 detector. Based on the experience gained in sensor development for the IceCube Upgrade, the new sensor will consist of up to eighteen 4 inch PMTs housed in a transparent pressure vessel, providing homogeneous angular coverage. The use of custom molded optical 'gel pads' around the PMTs enhances the photon capture rate via total internal reflection at the gel-air interface. This contribution presents simulation studies of various sensor, PMT, and gel pad geometries aimed at optimizing the sensitivity of the optical module in the face of confined space and harsh environmental conditions at the South Pole.
  •  
50.
  • Abbasi, R., et al. (author)
  • POCAM in the IceCube Upgrade
  • 2022
  • In: 37th International Cosmic Ray Conference (ICRC 2021). - Trieste, Italy : Sissa.
  • Conference paper (peer-reviewed)abstract
    • The IceCube Neutrino Observatory at the geographic South Pole instruments a gigaton of glacial Antarctic ice with over 5000 photosensors. The detector, by now running for over a decade, will be upgraded with seven new densely instrumented strings. The project focuses on the improvement of low-energy and oscillation physics sensitivities as well as re-calibration of the existing detector. Over the last few years we developed a Precision Optical Calibration Module (POCAM) providing self-monitored, isotropic, nanosecond, light pulses for optical calibration of large-volume detectors. Over 20 next-generation POCAMs will be calibrated and deployed in the IceCube Upgrade in order to reduce existing detector systematics. We report a general overview of the POCAM instrument, its performance and calibration procedures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 94
Type of publication
conference paper (53)
journal article (40)
research review (1)
Type of content
peer-reviewed (94)
Author/Editor
Botner, Olga (85)
Hallgren, Allan, 195 ... (85)
Pérez de los Heros, ... (85)
O'Sullivan, Erin (83)
Burgman, Alexander (65)
Zhang, Z. (60)
show more...
Deoskar, Kunal (31)
Walck, Christian (28)
Hultqvist, Klas (23)
Finley, Chad (23)
Ahrens, Maryon (21)
BenZvi, S. (7)
Chen, C. (6)
Bai, X. (6)
Engel, R. (6)
Choi, S. (6)
Ackermann, M. (6)
Adams, J. (6)
Aguilar, J. A. (6)
Barwick, S. W. (6)
Bay, R. (6)
Beatty, J. J. (6)
Berley, D. (6)
Bernardini, E. (6)
Besson, D. Z. (6)
Binder, G. (6)
Blaufuss, E. (6)
Braun, J. (6)
Chirkin, D. (6)
Classen, L. (6)
Cowen, D. F. (6)
De Clercq, C. (6)
Desiati, P. (6)
de Vries, K. D. (6)
de Wasseige, G. (6)
DeYoung, T. (6)
Diaz-Velez, J. C. (6)
Ehrhardt, T. (6)
Fazely, A. R. (6)
Fedynitch, A. (6)
Andeen, K. (6)
Anton, G. (6)
Blot, S. (6)
Bourbeau, E. (6)
Brostean-Kaiser, J. (6)
Busse, R. S. (6)
Conrad, J. M. (6)
Coppin, P. (6)
Correa, P. (6)
Dave, P. (6)
show less...
University
Uppsala University (92)
Stockholm University (31)
Chalmers University of Technology (8)
Karolinska Institutet (3)
Högskolan Dalarna (3)
Umeå University (2)
show more...
Lund University (2)
Mälardalen University (1)
Södertörn University (1)
show less...
Language
English (94)
Research subject (UKÄ/SCB)
Natural sciences (89)
Medical and Health Sciences (5)
Engineering and Technology (2)
Social Sciences (2)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view