SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sin K) "

Search: WFRF:(Sin K)

  • Result 1-29 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • 2019
  • Journal article (peer-reviewed)
  •  
5.
  •  
6.
  •  
7.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
8.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
9.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
10.
  • Marouli, Eirini, et al. (author)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Journal article (peer-reviewed)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
11.
  •  
12.
  • Wain, Louise V, et al. (author)
  • Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.
  • 2017
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:3, s. 416-425
  • Journal article (peer-reviewed)abstract
    • Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10(-49)), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
  •  
13.
  •  
14.
  • Hsu, Angel, et al. (author)
  • Opportunities and barriers to net-zero cities
  • 2022
  • In: One Earth. - : Elsevier. - 2590-3330 .- 2590-3322. ; 5:7, s. 739-744
  • Journal article (peer-reviewed)abstract
    • Today, more than 700 cities worldwide have made net-zero pledges. Managing these bold targets, however, is not easy given the complexity of urban systems. Although holistic mitigation efforts are vital, individual sectors are likely to face their own challenges and require tailor-made solutions. This Voices asks: what are the challenges and opportunities in transforming cities toward net-zero carbon emissions?
  •  
15.
  • Imamura, Fumiaki, et al. (author)
  • Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes : A pooled analysis of prospective cohort studies
  • 2020
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:6
  • Journal article (peer-reviewed)abstract
    • BackgroundDe novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes (T2D).Methods and findingsSeventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Australia, 1 from Taiwan; baseline years = 1970–1973 to 2006–2010) conducted harmonized individual-level analyses of associations of DNL-related fatty acids with incident T2D. In total, we evaluated 65,225 participants (mean ages = 52.3–75.5 years; % women = 20.4%–62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9 with incident T2D was estimated, adjusted for demographic factors, socioeconomic characteristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status, and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of fatty acid concentrations were 1.53 (1.41–1.66; p < 0.001) for 16:0, 1.40 (1.33–1.48; p < 0.001) for 16:1n-7, 1.14 (1.05–1.22; p = 0.001) for 18:0, and 1.16 (1.07–1.25; p < 0.001) for 18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%–73.1% for each fatty acid) but not explained by lipid fractions and global geographical regions. Further adjusted for triglycerides (and 16:0 when appropriate) to evaluate associations independent of overall DNL, the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for 18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94–1.13). These findings had limitations in potential reverse causation and residual confounding by imprecisely measured or unmeasured factors.ConclusionsConcentrations of fatty acids in the DNL were positively associated with T2D incidence. Our findings support further work to investigate a possible role of DNL and individual fatty acids in the development of T2D.
  •  
16.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
17.
  • Mak, Wing Cheung, et al. (author)
  • Biofunctionalized indigo-nanoparticles as biolabels for the generation of precipitated visible signal in immunodipsticks
  • 2011
  • In: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 26:7, s. 3148-3153
  • Journal article (peer-reviewed)abstract
    • A novel class of organic nanoparticles as biolabels that can generate an instant visible signal was applied to immunodipsticks. A new principle for signal generation based on hydrolysis of colourless signal precursor molecules to produce coloured signal molecules followed by signal precipitation and localization was demonstrated. The nanoparticle biolabels were applied to sandwich immunoassays for the detection of mouse immunoglobulin G (M IgG). In the presence of M IgG, a nanoparticle-immunocomplex was formed and bound on the test zone immobilized with goat anti M IgG (Gt α M IgG). A blue line was developed on the test zone upon the addition of a signal developing reagent. An optical signal could be simply assessed using naked eyes or quantified using a reading device. The lowest visible signal that could be observed using naked eyes was found to be 1.25 μg L−1 M IgG. The nanoparticle biolabel also showed a better sensitivity (signal-to-noise ratio) compared with the conventional colloidal gold biolabel. This novel class of organic nanoparticles offers an alternative biolabel system for the development of point-of-care immunodipsticks.
  •  
18.
  • Shrine, Nick, et al. (author)
  • New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
  • 2019
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 481-493
  • Journal article (peer-reviewed)abstract
    • Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
  •  
19.
  • Boorsma, CE, et al. (author)
  • A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages
  • 2017
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 12570-
  • Journal article (peer-reviewed)abstract
    • The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4′-dimethoxy-2,2′-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 μM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.
  •  
20.
  • Gernaey, K.V., et al. (author)
  • Wastewater Systems
  • 2011
  • In: Handbook of Ecological Models used in Ecosystem and Environmental Management. - 9781439818121 ; , s. 277-324
  • Book chapter (peer-reviewed)
  •  
21.
  • Imamura, Fumiaki, et al. (author)
  • Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes : A pooled analysis of prospective cohort studies
  • 2018
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 15:10
  • Journal article (peer-reviewed)abstract
    • Background We aimed to investigate prospective associations of circulating or adipose tissue odd-chain fatty acids 15: 0 and 17: 0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of dairy fat intake, with incident type 2 diabetes (T2D). Methods and findings Sixteen prospective cohorts from 12 countries (7 from the United States, 7 from Europe, 1 from Australia, 1 from Taiwan) performed new harmonised individual-level analysis for the prospective associations according to a standardised plan. In total, 63,682 participants with a broad range of baseline ages and BMIs and 15,180 incident cases of T2D over the average of 9 years of follow-up were evaluated. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Prespecified interactions by age, sex, BMI, and race/ethnicity were explored in each cohort and were meta-analysed. Potential heterogeneity by cohort-specific characteristics (regions, lipid compartments used for fatty acid assays) was assessed with metaregression. After adjustment for potential confounders, including measures of adiposity (BMI, waist circumference) and lipogenesis (levels of palmitate, tri-glycerides), higher levels of 15:0, 17:0, and t16:1n-7 were associated with lower incidence of T2D. In the most adjusted model, the hazard ratio (95% CI) for incident T2D per cohort-specific 10th to 90th percentile range of 15:0 was 0.80 (0.73-0.87); of 17:0, 0.65 (0.59-0.72); of t16:1n7, 0.82 (0.70-0.96); and of their sum, 0.71 (0.63-0.79). In exploratory analyses, similar associations for 15:0, 17:0, and the sum of all three fatty acids were present in both genders but stronger in women than in men ((pinteraction) < 0.001). Whereas studying associations with biomarkers has several advantages, as limitations, the biomarkers do not distinguish between different food sources of dairy fat (e.g., cheese, yogurt, milk), and residual confounding by unmeasured or imprecisely measured confounders may exist. Conclusions In a large meta-analysis that pooled the findings from 16 prospective cohort studies, higher levels of 15:0, 17:0, and t16:1n-7 were associated with a lower risk of T2D.
  •  
22.
  • Lee, Dung-Fang, et al. (author)
  • Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling.
  • 2012
  • In: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 11:2
  • Journal article (peer-reviewed)abstract
    • Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.
  •  
23.
  • MacLeod, Rebecca, et al. (author)
  • Selective isolation of hyaluronan by solid phase adsorption to silica
  • 2022
  • In: Analytical Biochemistry. - : Academic Press. - 0003-2697 .- 1096-0309. ; 652
  • Journal article (peer-reviewed)abstract
    • A solid phase adsorption method for selective isolation of hyaluronan (HA) from biological samples is presented. Following enzymatic degradation of protein, HA can be separated from sulfated glycosaminoglycans, other unsulfated glycosaminoglycans, nucleic acids, and proteolytic fragments by adsorption to amorphous silica at specific salt concentrations. The adsorbed HA can be released from silica using neutral and basic aqueous solutions. HA ranging in size from ∼9 kDa to MDa polymers has been purified by this method from human serum and conditioned medium of cultured cells.
  •  
24.
  • Ngassie, Maunick Lefin Koloko, et al. (author)
  • Age-associated differences in the human lung extracellular matrix
  • 2023
  • In: American Journal of Physiology - Lung Cellular and Molecular Physiology. - 1040-0605. ; 324:5, s. 799-814
  • Journal article (peer-reviewed)abstract
    • Extracellular matrix (ECM) remodeling has been associated with chronic lung diseases. However, information about specific age-associated differences in lung ECM is currently limited. In this study, we aimed to identify and localize age-associated ECM differences in human lungs using comprehensive transcriptomic, proteomic, and immunohistochemical analyses. Our previously identified age-associated gene expression signature of the lung was re-analyzed limiting it to an aging signature based on 270 control patients (37–80 years) and focused on the Matrisome core geneset using geneset enrichment analysis. To validate the age-associated transcriptomic differences on protein level, we compared the age-associated ECM genes (false discovery rate, FDR < 0.05) with a profile of age-associated proteins identified from a lung tissue proteomics dataset from nine control patients (49–76 years) (FDR < 0.05). Extensive immunohistochemical analysis was used to localize and semi-quantify the age-associated ECM differences in lung tissues from 62 control patients (18–82 years). Comparative analysis of transcriptomic and proteomic data identified seven ECM proteins with higher expression with age at both gene and protein levels: COL1A1, COL6A1, COL6A2, COL14A1, FBLN2, LTBP4, and LUM. With immunohistochemistry, we demonstrated higher protein levels with age for COL6A2 in whole tissue, parenchyma, airway wall, and blood vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in lung parenchyma. Our study revealed that higher age is associated with lung ECM remodeling, with specific differences occurring in defined regions within the lung. These differences may affect lung structure and physiology with aging and as such may increase susceptibility to developing chronic lung diseases.
  •  
25.
  •  
26.
  • Rivas, Manuel A., et al. (author)
  • Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:11, s. 1066-U50
  • Journal article (peer-reviewed)abstract
    • More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping of 70 rare and low-frequency protein-altering variants in nine independent case-control series (16,054 Crohn's disease cases, 12,153 ulcerative colitis cases and 17,575 healthy controls), we identified four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association with a protective splice variant in CARD9 (P < 1 x 10(-16), odds ratio approximate to 0.29) and additional associations with coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by identifying new, rare and probably functional variants that could aid functional experiments and predictive models.
  •  
27.
  • Sola-Riera, Caries, et al. (author)
  • Hantavirus Inhibits TRAIL-Mediated Killing of Infected Cells by Downregulating Death Receptor 5
  • 2019
  • In: Cell Reports. - : Cell Press. - 2211-1247. ; 28:8, s. 2124-2139
  • Journal article (peer-reviewed)abstract
    • Cytotoxic lymphocytes normally kill virus-infected cells by apoptosis induction. Cytotoxic granule-dependent apoptosis induction engages the intrinsic apoptosis pathway, whereas death receptor (DR)-dependent apoptosis triggers the extrinsic apoptosis pathway. Hantaviruses, single-stranded RNA viruses of the order Bunyavirales, induce strong cytotoxic lymphocyte responses in infected humans. Cytotoxic lymphocytes, however, are largely incapable of eradicating hantavirus-infected cells. Here, we show that the prototypic hantavirus, Hantaan virus (HTNV), induces TRAIL production but strongly inhibits TRAIL-mediated extrinsic apoptosis induction in infected cells by downregulating DR5 cell surface expression. Mechanistic analyses revealed that HTNV triggers both 26S proteasome-dependent degradation of DR5 through direct ubiquitination of DR5 and hampers DR5 transport to the cell surface. These results corroborate earlier findings, demonstrating that hantavirus also inhibits cytotoxic cell granule-dependent apoptosis induction. Together, these findings show that HTNV counteracts intrinsic and extrinsic apoptosis induction pathways, providing a defense mechanism utilized by hantaviruses to inhibit cytotoxic cell-mediated eradication of infected cells.
  •  
28.
  •  
29.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-29 of 29
Type of publication
journal article (23)
conference paper (3)
book chapter (1)
Type of content
peer-reviewed (27)
Author/Editor
Lind, Lars (7)
Luan, Jian'an (7)
Raitakari, Olli T (6)
Rudan, Igor (6)
Wareham, Nicholas J. (6)
Laakso, Markku (6)
show more...
Thorleifsson, Gudmar (6)
Stefansson, Kari (6)
Loos, Ruth J F (6)
Salomaa, Veikko (5)
Strachan, David P (5)
Deloukas, Panos (5)
North, Kari E. (5)
McCarthy, Mark I (5)
Ridker, Paul M. (5)
Chasman, Daniel I. (5)
van Duijn, Cornelia ... (5)
Langenberg, Claudia (5)
Boehnke, Michael (5)
Mohlke, Karen L (5)
Thorsteinsdottir, Un ... (5)
Gieger, Christian (5)
Samani, Nilesh J. (5)
Jarvelin, Marjo-Riit ... (5)
Hattersley, Andrew T (5)
Mahajan, Anubha (5)
Caulfield, Mark J. (5)
Munroe, Patricia B. (5)
Wilson, James F. (5)
Kovacs, Peter (5)
Zhao, Jing Hua (5)
Perola, Markus (4)
Kuusisto, Johanna (4)
Scott, Robert A (4)
Zhao, Wei (4)
Saleheen, Danish (4)
Surakka, Ida (4)
Lehtimäki, Terho (4)
Tuomilehto, Jaakko (4)
Locke, Adam E. (4)
Rotter, Jerome I. (4)
Martin, Nicholas G. (4)
Kaprio, Jaakko (4)
Walker, Mark (4)
Gustafsson, Stefan (4)
Karpe, Fredrik (4)
Kathiresan, Sekar (4)
Rivadeneira, Fernand ... (4)
Jousilahti, Pekka (4)
Hui, Jennie (4)
show less...
University
Lund University (13)
Karolinska Institutet (12)
Uppsala University (10)
Umeå University (6)
University of Gothenburg (5)
Halmstad University (1)
show more...
Stockholm University (1)
University of Gävle (1)
Örebro University (1)
Linköping University (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (29)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)
Natural sciences (5)
Engineering and Technology (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view