SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sohail Muhammad Tayyab) "

Search: WFRF:(Sohail Muhammad Tayyab)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sohail, Muhammad Tayyab, et al. (author)
  • Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan
  • 2022
  • In: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 12
  • Journal article (peer-reviewed)abstract
    • Groundwater depletion is an emerging problem worldwide due to changes in climate and an increase in urbanization. Two significant water-bearing formations, the Oligocene-aged Nari and the Miocene-aged Gaj, were utilized as a case study exposed near Karachi, Pakistan. Groundwater budgeting was performed through a classical equation. The inflow of groundwater in the formations was calculated by thermo-pluviometric data and water loss of Hub Dam. The potential of evapotranspiration (PET) was calculated by the Thornthwaite method. The groundwater inflow from Hub Dam was estimated by using 20 years of annual water loss data by removing PET. The total mean annual inflow of groundwater in the formations was 2414.12 US Gallons per Second (gps). The annual mean outflow was estimated by calculation of groundwater usage for industries and domestic purposes and the mean annual groundwater outflow was 5562.61 US gps and an annual deficit of groundwater was 3148.5 US gps. The research is composed of validating the groundwater budget. Direct Current Electrical Resistivity (DCER) and static water level data from existing industrial wells were used for groundwater maps. The DCER data indicates A-Type and K-Type sub-surface with high resistivity in the three-layer model. The average water table of residential areas in 2019 was 60 m and in industrial areas was 130 m. The oscillation of the groundwater table over the last 20 years and the deficit of the groundwater budget shows an alarming condition for the future. If the same scenario persists, then by 2025, the water table will decline up to 140 m.
  •  
2.
  • Sohail, Muhammad Tayyab, et al. (author)
  • Impacts of urbanization, LULC, LST, and NDVI changes on the static water table with possible solutions and water policy discussions: A case from Islamabad, Pakistan
  • 2023
  • In: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 11
  • Journal article (peer-reviewed)abstract
    • Rapid urbanization, coupled with land use land cover changes (LULC), has caused stress on freshwater resources around the globe. As in the case of Islamabad, the capital of Pakistan, the population has increased significantly, creating a deficit of natural resources and affecting the environment adversely. Therefore, the purpose of this study is to examine the effects of urbanization and LULC on the decline of the static water table in Islamabad. It also seeks to analyze water policy issues in order to achieve sustainable water resource development. The excessive pumping of the existing groundwater has exceeded the safe limit, which is justified by the constantly growing population. However, the changes in the LULC of the study area have turned many green pastures into barren land. Our research data were obtained from the Capital Development Authority (CDA), Pakistan Meteorological Department (PMD), and Landsat Satellite images. After analyzing PMD and CDA data for the last 20 years (2000–2020), the results were interpreted using Arc GIS. It has been observed that the Normalized Difference Vegetation Index (NDVI) value increases as the Land Surface Temperature (LST) decreases. Therefore, the overall observation is a decreasing trend in Islamabad temperatures due to the increased vegetation in the study area during the period of 2000–2020. It was observed that there has been a considerable drop in water levels due to over-pumping in a few areas. It is primarily associated with the increasing population of the capital in the last 2 decades. This study uses a survey to explore the potential locations for check dams to enhance and recharge the groundwater aquifers in the capital, Islamabad. It suggests catchment areas throughout the Margalla Hills along with different localities, such as Rumli Village, Trail 5, and Shahdara.
  •  
3.
  • Ehsan, Muhsan, et al. (author)
  • Groundwater delineation for sustainable improvement and development aided by GIS, AHP, and MIF techniques
  • 2024
  • In: Applied water science. - : Springer Science and Business Media Deutschland GmbH. - 2190-5487 .- 2190-5495. ; 14:2
  • Journal article (peer-reviewed)abstract
    • Exploration of groundwater is an integral part of viable resource growth for society, economy, and irrigation. However, uncontrolled utilization is mainly reported in urban and industries due to the increasing demand for water in semi-arid and arid regions of the world. In the background, groundwater demarcation for potential areas is vital in meeting necessary demand. The current study applied an integrated method comprising the analytical hierarchy process (AHP), multiple influence factors (MIF), combined with a linear regression curve and observatory well data for groundwater prospects mapping. Thematic maps such as flow direction, flow accumulation, elevation map, land use land cover, slope, soil texture, hill shade, geomorphology, normalized vegetation index, and groundwater depth map were generated utilizing remote sensing techniques. The relative weight of each parameter was estimated and then assigned to major and minor parameters. Potential zones for groundwater were classified into five classes, namely very good, good, moderate, poor, and very poor, based on AHP and MIF methods. A spatially explicit sensitivity and uncertainty analysis method to a GIS-based multi-criteria groundwater potential zone model is presented in this research. The study addressed a flaw in the way groundwater potential mapping results are typically presented in GIS-based multi-criteria decision analysis studies, where discrete class outputs are used without any assessment of their certainty with respect to variations in criteria weighting, which is one of the main contributors to output uncertainty. The study region is categorized based on inferred results as very poor, poor, marginal, and very good in potential ground quality 3.04 km2 is considered extremely poor, 3.33 km2 is considered poor, 64.42 km2 is considered very good, and 85.84 km2 is considered marginal zones, which shows reliable and potential implementation. The outcomes of AHP and MIF were validated by linear regression curve and actual water table in a study area. The study results help to formulate the potential demarcation of groundwater zones for future sustainable planning and development of groundwater sources. This study may be helpful to provide a cost-effective solution to water resources crises. The current study finding may be helpful for decision-makers and administrative professionals for sustainable management of groundwater resources for present and future demands.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view