SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sooman Linda) "

Search: WFRF:(Sooman Linda)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Agnarsdóttir, Margrét, et al. (author)
  • SOX10 expression in superficial spreading and nodular malignant melanomas
  • 2010
  • In: Melanoma research. - 0960-8931 .- 1473-5636. ; 20:6, s. 468-478
  • Journal article (peer-reviewed)abstract
    • SOX10 is a transcription factor expressed in nerve cells and melanocytes. The aim of this study was to investigate the protein expression pattern of SOX10 in malignant melanoma tumors and to analyze whether the results correlated with clinical parameters and the proliferation marker Ki-67. Furthermore, proliferation and migration were analyzed in three different cell lines employing SOX10 small interfering RNA-mediated silencing. Expression patterns were determined in 106 primary tumors and 39 metastases in addition to 16 normal skin samples and six benign nevi employing immunohistochemistry and tissue microarrays. The immunohistochemical staining was evaluated manually and with an automated algorithm. SOX10 was strongly expressed in the benign tissues, but for the malignant tumors superficial spreading melanomas stained stronger than nodular malignant melanomas (P = 0.008). The staining intensity was also inversely correlated with T-stage (Spearman's rho = -0.261, P = 0.008). Overall survival and time to recurrence were significantly correlated with SOX10 intensity, but not in multivariate analysis including T-stage. With the automated algorithm there was an inverse correlation between the SOX10 staining intensity and the proliferation marker, Ki-67 (rho = -0.173, P = 0.02) and a significant difference in the intensity signal between the benign tissues, the primary tumors and the metastases where the metastases stained the weakest (P <= 0.001). SOX10 downregulation resulted in variable effects on proliferation and migration rates in the melanoma cell lines. In conclusion, the SOX10 intensity level differed depending on the tissue studied and SOX10 might have a role in survival. No conclusion regarding the role of SOX10 for in-vitro proliferation and migration could be drawn. Melanoma Res 20:468-478
  •  
3.
  • Popova, Svetlana N, et al. (author)
  • Subtyping of gliomas of various WHO grades by the application of immunohistochemistry
  • 2014
  • In: Histopathology. - : Wiley. - 0309-0167 .- 1365-2559. ; 64:3, s. 365-379
  • Journal article (peer-reviewed)abstract
    • AimsIn 2010, four subtypes (classical, proneural, mesenchymal, and neural) of glioblastoma multiforme (GBM) were defined by molecular genetic analyses. The objective of this study was to assess whether gliomas, independently of the type and grade, could be subdivided into protein-based subtypes.Methods and resultsA tissue microarray (TMA) approach was applied to incorporate tissue samples of low-grade and high-grade gliomas into five TMAs. High expression levels of epidermal growth factor receptor (EGFR), CD44, c-MER proto-oncogene tyrosine kinase (MERTK), platelet-derived growth factor receptor α, p53, oligodendrocyte transcription factor 2 (OLIG2) and isocitrate dehydrogenase 1 with the R132H mutation were assessed using immunohistochemistry (IHC). Glioma could be subdivided into four subtypes by IHC. The majority of the low-grade gliomas were of the proneural subtype, i.e. high p53 expression (63% of grade II). The classical subtype, with high EGFR and low p53 expression, was most common in GBMs (39%), followed by the proneural (29%) and mesenchymal (with high CD44 and MERTK expression) (29%) subtypes, a frequency that is in line with previously published data based on molecular genetics.ConclusionsAssessment of the expression of the five proteins EGFR, CD44, MERTK, p53 and OLIG2 is sufficient for subtyping gliomas, and can be recommended for implementation in clinical practice for both low-grade and high-grade gliomas.
  •  
4.
  • Sooman, Linda, et al. (author)
  • Discovery of a Novel Linoleate Dioxygenase of Fusarium oxysporum and Linoleate Diol Synthase of Colletotrichum graminicola
  • 2015
  • In: Lipids. - : Wiley. - 0024-4201 .- 1558-9307. ; 50:12, s. 1243-1252
  • Journal article (peer-reviewed)abstract
    • Fungal pathogens constitute serious threats for many forms of life. The pathogenic fungi Fusarium and Colletotrichum and their formae speciales (f. spp.) infect many types of crops with severe consequences and Fusarium oxysporum can also induce keratitis and allergic conditions in humans. These fungi code for homologues of dioxygenase-cytochrome P450 (DOX-CYP) fusion proteins of the animal heme peroxidase (cyclooxygenase) superfamily. The objective was to characterize the enzymatic activities of the DOX-CYP homologue of Colletotrichum graminicola (EFQ34869) and the DOX homologue of F. oxysporum (EGU79548). The former oxidized oleic and linoleic acids in analogy with 7,8-linoleate diol synthases (LDSs), but with the additional biosynthesis of 8,11-dihydroxylinoleic acid. The latter metabolized fatty acids to hydroperoxides with broad substrate specificity. It oxidized 20:4n-6 and 18:2n-6 to hydroperoxides with an R configuration at the (n-10) positions, and other n-6 fatty acids in the same way. [11S-H-2]18:2n-6 was oxidized with retention and [11R-H-2]18:2n-6 with loss of deuterium, suggesting suprafacial hydrogen abstraction and oxygen insertion. Fatty acids of the n-3 series were oxidized less efficiently and often to hydroperoxides with an R configuration at both (n-10) and (n-7) positions. The enzyme spans 1426 amino acids with about 825 residues in the N-terminal domain with DOX homology and 600 residues at the C-terminal domain without homology to other enzymes. We conclude that fungal oxylipins can be formed by two novel subfamilies of cyclooxygenase-related DOX.
  •  
5.
  • Sooman, Linda, et al. (author)
  • FGF2 as a potential prognostic biomarker for proneural glioma patients
  • 2015
  • In: Acta Oncologica. - : Informa Healthcare. - 0284-186X .- 1651-226X. ; 54:3, s. 385-394
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The survival of high-grade glioma patients is poor and the treatment of these patients can cause severe side effects. This fosters the necessity to identify prognostic biomarkers, in order to optimize treatment and diminish unnecessary suffering of patients. The aim of this study was to identify prognostic biomarkers for high-grade glioma patients. METHODS: Eleven proteins were selected for analysis due to their suggested importance for survival of patients with other types of cancers and due to a high variation in protein levels between glioma patients (according to the Human Protein Atlas, www.proteinatlas.org). Protein expression patterns of these 11 proteins were analyzed by immunohistochemistry in tumor samples from 97 high-grade glioma patients. The prognostic values of the proteins were analyzed with univariate and multivariate Cox regression analyses for the high-grade glioma patients, including subgroup analyses of histological subtypes and immunohistochemically defined molecular subtypes. RESULTS: The proteins with the most significant (univariate and multivariate p<0.05) correlations were analyzed further with cross-validated Kaplan-Meier analyses for the possibility of predicting survival based on the protein expression pattern of the corresponding candidate. Random Forest classification with variable subset selection was used to analyze if a protein signature consisting of any combination of the 11 proteins could predict survival for the high-grade glioma patients and the subgroup with glioblastoma patients. The proteins which correlated most significantly (univariate and multivariate p<0.05) to survival in the Cox regression analyses were Myc for all high-grade gliomas and FGF2, CA9 and CD44 for the subgroup of proneural gliomas, with FGF2 having a strong negative predictive value for survival. No prognostic signature of the proteins could be found. CONCLUSION: FGF2 is a potential prognostic biomarker for proneural glioma patients, and warrants further investigation.
  •  
6.
  • Sooman, Linda, 1983- (author)
  • Prognostic Biomarkers and Target Proteins for Treatment of High-grade Gliomas
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The survival for high-grade glioma patients is poor and the treatment may cause severe side effects. A common obstacle in the treatment is chemoresistance. To improve the quality of life and prolong survival for these patients prognostic biomarkers and new approaches for chemotherapy are needed. To this end, a strategy to evade chemoresistance was evaluated by combining chemotherapeutic drugs with agents inhibiting resistance mechanisms identified by a bioinformatic analysis (paper I). The prognostic value of 13 different proteins was analyzed in this thesis (papers II-IV). Two of them, p38 mitogen-activated protein kinase (MAPK) and protein tyrosine phosphatase non-receptor type 6 (PTPN6, also known as SHP1) were analyzed for their potential as targets in combination chemotherapy (in paper III and IV, respectively). We found that:PTPN6 expression and methylation status may be important for survival of anaplastic glioma patients, p38 MAPK phosphorylation may be a potential negative prognostic biomarker for high-grade glioma patients and FGF2 expression may be a potential negative prognostic biomarker for proneural glioma patients.PTPN6 may be a useful target for combination chemotherapy with cisplatin, melphalan or bortezomib in high-grade gliomas. The following drug combinations; camptothecin combined with an EGFR or RAC1 inhibitor, imatinib combined with a Notch or RAC1 inhibitor, temozolomide combined with an EGFR or FAK inhibitor and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for high-grade gliomas.
  •  
7.
  • Sooman, Linda, et al. (author)
  • PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas
  • 2014
  • In: Tumor Biology. - : Springer Science and Business Media LLC. - 1010-4283 .- 1423-0380. ; 35:5, s. 4479-4488
  • Journal article (peer-reviewed)abstract
    • The prognosis of high-grade glioma patients is poor, and the tumors are characterized by resistance to therapy. The aims of this study were to analyze the prognostic value of the expression of the protein tyrosine phosphatase non-receptor type 6 (PTPN6, also referred to as SHP1) in high-grade glioma patients, the epigenetic regulation of the expression of PTPN6, and the role of its expression in chemotherapy resistance in glioma-derived cells. PTPN6 expression was analyzed with immunohistochemistry in 89 high-grade glioma patients. Correlation between PTPN6 expression and overall survival was analyzed with Kaplan-Meier univariate analysis and Cox regression multivariate analysis. Differences in drug sensitivity to a panel of 16 chemotherapeutic drugs between PTPN6-overexpressing clones and control clones were analyzed in vitro with the fluorometric microculture cytotoxicity assay. Cell cycle analysis was done with Krishan staining and flow cytometry. Apoptosis was analyzed with a cell death detection ELISA kit as well as cleaved caspase-3 and caspase-9 Western blotting. Autophagy was analyzed with LC3B Western blotting. Methylation of the PTPN6 promoter was analyzed with bisulfite pyrosequencing, and demethylation of PTPN6 was done with decitabine treatment. The PTPN6 expression correlated in univariate analysis to poor survival for anaplastic glioma patients (p = 0.026). In glioma-derived cell lines, overexpression of PTPN6 caused increase resistance (p < 0.05) to the chemotherapeutic drugs bortezomib, cisplatin, and melphalan. PTPN6 expression did not affect bortezomib-induced cell cycle arrest, apoptosis, or autophagy. Low PTPN6 promoter methylation correlated to protein expression, and the protein expression was increased upon demethylation in glioma-derived cells. PTPN6 expression may be a factor contributing to poor survival for anaplastic glioma patients, and in glioma-derived cells, its expression is epigenetically regulated and influences the response to chemotherapy.
  •  
8.
  • Sooman, Linda, et al. (author)
  • Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide
  • 2016
  • In: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434. ; 1861:2, s. 108-118
  • Journal article (peer-reviewed)abstract
    • The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.
  •  
9.
  • Sooman, Linda, et al. (author)
  • SHP1 expression is epigenetically regulated and influences the sensitivity to chemotherapeutic agents in glioblastoma cells
  • 2012
  • In: Neuro-Oncology. - : Oxford University Press (OUP). - 1522-8517 .- 1523-5866. ; 14:suppl 3, s. iii18-iii18
  • Journal article (other academic/artistic)abstract
    • INTRODUCTION: Glioblastoma is characterized by chemoresistance. One factor than can contribute to chemoresistance is aberrant DNA methylation of specific genes relevant for drug response, e.g. tumor suppressor genes. AIM: The aim of this study was to investigate whether the tumor suppressor gene SHP1 is epigenetically regulated and if its overexpression affects the sensitivity to chemotherapeutic drugs with different mechanisms of action in glioblastoma cell lines.METHODS: Differences in methylation levels in the SHP1 promoter and SHP1 protein expressions between untreated cells and cells treated with the demethylating agent decitabine were analyzed with bisulfite Pyrosequencing and Western blotting. Differences in drug sensitivity to a panel of chemotherapeutic drugs with different mechanisms of action between SHP1 overexpressing clones and control clones were analyzed with the fluorometric microculture cytotoxicity assay.RESULTS: We demonstrated that SHP1 promoter methylation was correlated to SHP1 expression and that the expression was increased upon demethylation. Overexpression of SHP1 resulted in lower (p < 0.05) sensitivity to the proteasome inhibitor bortezomib and the alkylating agents cisplatin and melphalan.CONCLUSION: SHP1 expression may be epigenetically regulated and its overexpression influences the sensitivity to chemotherapeutic drugs in glioblastoma derived cells.
  •  
10.
  •  
11.
  • Sooman, Linda, et al. (author)
  • Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines
  • 2013
  • In: Cancer Chemotherapy and Pharmacology. - : Springer Science and Business Media LLC. - 0344-5704 .- 1432-0843. ; 72:2, s. 329-340
  • Journal article (peer-reviewed)abstract
    • The current treatment strategies for glioblastoma have limited health and survival benefits for the patients. A common obstacle in the treatment is chemoresistance. A possible strategy to evade this problem may be to combine chemotherapeutic drugs with agents inhibiting resistance mechanisms. The aim with this study was to identify molecular pathways influencing drug resistance in glioblastoma-derived cells and to evaluate the potential of pharmacological interference with these pathways to identify synergistic drug combinations. Global gene expressions and drug sensitivities to three chemotherapeutic drugs (imatinib, camptothecin and temozolomide) were measured in six human glioblastoma-derived cell lines. Gene expressions that correlated to drug sensitivity or resistance were identified and mapped to specific pathways. Selective inhibitors of these pathways were identified. The effects of six combinations of inhibitors and chemotherapeutic drugs were evaluated in glioblastoma-derived cell lines. Drug combinations with synergistic effects were also evaluated in non-cancerous epithelial cells. Four drug combinations had synergistic effects in at least one of the tested glioblastoma-derived cell lines; camptothecin combined with gefitinib (epidermal growth factor receptor inhibitor) or NSC 23766 (ras-related C3 botulinum toxin substrate 1 inhibitor) and imatinib combined with DAPT (Notch signaling inhibitor) or NSC 23766. Of these, imatinib combined with DAPT or NSC 23766 did not have synergistic effects in non-cancerous epithelial cells. Two drug combinations had at least additive effects in one of the tested glioblastoma-derived cell lines; temozolomide combined with gefitinib or PF-573228 (focal adhesion kinase inhibitor). Four synergistic and two at least additive drug combinations were identified in glioblastoma-derived cells. Pathways targeted by these drug combinations may serve as targets for future drug development with the potential to increase efficacy of currently used/evaluated chemotherapy.
  •  
12.
  • Sooman, Linda, et al. (author)
  • Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival
  • 2013
  • In: Medical Oncology. - : Springer Science and Business Media LLC. - 1357-0560 .- 1559-131X. ; 30:3, s. 638-
  • Journal article (peer-reviewed)abstract
    • The survival for patients with high-grade glioma is poor, and only a limited number of patients respond to the therapy. The aim of this study was to analyze the significance of using p38 MAPK phosphorylation as a prognostic marker in high-grade glioma patients and as a therapeutic target in combination chemotherapy with vandetanib. p38 MAPK phosphorylation was analyzed with immunohistochemistry in 90 high-grade glioma patients. Correlation between p38 MAPK phosphorylation and overall survival was analyzed with Mann-Whitney U test analysis. The effects on survival of glioblastoma cells of combining vandetanib with the p38 MAPK inhibitor SB 203580 were analyzed in vitro with the median-effect method with the fluorometric microculture cytotoxicity assay. Two patients had phosphorylated p38 MAPK in both the cytoplasm and nucleus, and these two presented with worse survival than patients with no detectable p38 MAPK phosphorylation or phosphorylated p38 MAPK only in the nucleus. This was true for both high-grade glioma patients (WHO grade III and IV, n = 90, difference in median survival: 6.1 months, 95 % CI [0.20, 23], p = 0.039) and for the subgroup with glioblastoma patients (WHO grade IV, n = 70, difference in median survival: 6.1 months, 95 % CI [0.066, 23], p = 0.043). The combination of vandetanib and the p38 MAPK inhibitor SB 203580 had synergistic effects on cell survival for glioblastoma-derived cells in vitro. In conclusion, p38 MAPK phosphorylation may be a prognostic marker for high-grade glioma patients, and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for glioma patients.
  •  
13.
  • Wickström, Malin, et al. (author)
  • The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan
  • 2010
  • In: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 79:9, s. 1281-1290
  • Journal article (peer-reviewed)abstract
    • The alkylating prodrug of melphalan, J1 (melphalanyl-l-p-fluorophenylalanyl ethyl ester) is currently in early clinical trials. Preclinical studies have shown that J1-mediated cytotoxicity is dependent on hydrolytic activity of tumor cells. In this report we have analyzed potential peptidases and esterases of importance for release of free melphalan from J1. Exposure of tumor cell lines to J1 resulted in a significant increased level of free intracellular melphalan, at least tenfold at Cmax, compared to exposure to melphalan at the same molar concentration. This efficient intracellular delivery could be inhibited in both magnitude and in time by bestatin, a broad spectrum inhibitor of the aminopeptidases, including the metalloproteinase aminopeptidase N (APN, EC 3.4.11.2.), and ebelactone A, an esterase inhibitor. These effects resulted, as expected, in decreased cytotoxic effects of J1. A specific role of APN in hydrolyzing J1 releasing free melphalan was demonstrated in vitro with pure APN enzyme. By using plasmid-based overexpression of APN or down regulation of endogenous APN with siRNA in different tumor cell lines we here confirm the involvement of APN in J1-mediated cytotoxic and apoptotic signaling. In conclusion, this study demonstrates a role of APN in the activation of the melphalan prodrug J1 and subsequently, its cytotoxicity. Given that APN is shown to be overexpressed in several solid tumors our data suggest that J1 may be activated in a tumor selective manner.
  •  
14.
  • Wu, Xuping, et al. (author)
  • Alternative Cytotoxic Effects of the Postulated IGF-IR Inhibitor Picropodophyllin In Vitro
  • 2013
  • In: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 12:8, s. 1526-1536
  • Journal article (peer-reviewed)abstract
    • The insulin-like growth factor-1 (IGF-I) and its receptors play an important role in transformation and progression of several malignancies. Inhibitors of this pathway have been developed and evaluated but generally performed poorly in clinical trials, and several drug candidates have been abandoned. The cyclolignan picropodophyllin (PPP) has been described as a potent and selective IGF-IR inhibitor and is currently undergoing clinical trials. We investigated PPP's activity in panels of human cancer cell lines (e.g., esophageal squamous carcinoma cell lines) but found no effects on the phosphorylation or expression of IGF-IR. Nor was the cytotoxic activity of PPP related to the presence or spontaneous phosphorylation of IGF-IR. However, its activity correlated with that of known tubulin inhibitors, and it destabilized microtubule assembly at cytotoxic concentrations also achievable in patients. PPP is a stereoisomer of podophyllotoxin (PPT), a potent tubulin inhibitor, and an equilibrium between the two has previously been described. PPP could thus potentially act as a reservoir for the continuous generation of low doses of PPT. Interestingly, PPP also inhibited downstream signaling from tyrosine kinase receptors, including the serine/threonine kinase Akt. This effect is associated with microtubule-related downregulation of the EGF receptor, rather than the IGF-IR. These results suggest that the cytotoxicity and pAkt inhibition observed following treatment with the cyclolignan PPP in vitro result from microtubule inhibition (directly or indirectly by spontaneous PPT formation), rather than any effect on IGF-IR. It is also suggested that PPT should be used as a reference compound in all future studies on PPP.
  •  
15.
  • Wu, Xuping, et al. (author)
  • Hsp90 is expressed and represents a therapeutic target in human oesophageal cancer using the inhibitor 17-allylamino-17-demethoxygeldanamycin
  • 2009
  • In: Br J Cancer. - : Springer Science and Business Media LLC. ; 100:2, s. 334-343
  • Journal article (peer-reviewed)abstract
    • Heat shock protein 90 (Hsp90) has been demonstrated to protect oncogenic variants of signalling molecules from degradation and may consequently serve as a therapeutic target for the treatment of oesophageal cancer for which adequate therapy is often lacking. We studied the expression of Hsp90 in tumour tissues of human oesophageal cancer and the impact of Hsp90 inhibition on oesophageal cancer cell lines using the drug 17-allylamino-17-demethoxygeldanamycin (17-AAG). Quantitative immunohistochemistry was performed on formalin-fixed paraffin-embedded tissues from patients with oesophageal cancer. In squamous cell carcinoma, a marked upregulation of Hsp90 could be noted in dysplastic epithelium and invasive cancer compared with normal epithelium. In adenocarcinoma, Hsp90 was expressed in neoplastic epithelium and also in normal non-neoplastic glands weakly. The inhibition of Hsp90 using 17-AAG led to a significant decrease in cell proliferation and viability in human oesophageal cancer cell lines. Using a clonogenic cell survival assay, Hsp90 inhibition significantly sensitised the cells for gamma-photon irradiation. Heat shock protein 90 was found to be critical for proper signalling induced by both epidermal growth factor and insulin-like growth factor-1, in which the inhibition of signalling by 17-AAG correlated with the observed reduction in cell proliferation and viability. These results showed that Hsp90 was selectively expressed in oesophageal cancer tissue compared with the corresponding normal tissue, and the inhibition of Hsp90 resulted in decreased proliferation and viability as well as radiosensitisation of oesophageal cancer cells. Heat shock protein 90 represents a potential therapeutic target in the treatment of patients with oesophageal cancer, alone or in combination with radiotherapy.
  •  
16.
  • Wu, Xuping, et al. (author)
  • Microtubule inhibition causes epidermal growth factor receptor inactivation in oesophageal cancer cells
  • 2013
  • In: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 42:1, s. 297-304
  • Journal article (peer-reviewed)abstract
    • Drugs that interfere with microtubule function can prevent cells from mitosis and may cause cell cycle arrest or apoptosis. Various microtubule targeting agents, both stabilizers and inhibitors, are used in a clinical setting to treat cancer. In the current study, we investigated the sensitivity of oesophageal cancer cells to different microtubule targeting agents. The current study demonstrated that different microtubule targeting agents disrupted the microtubule network and inhibited survival of oesophageal cancer cells in a dose-dependent manner. Interestingly, an additional cellular effect with inhibition of tyrosine phosphorylation of the EGFR and subsequent downregulation of EGFR-induced signalling was also observed, suggesting an additional mechanism of action for microtubule destabilising agents. A tyrosine phosphatase inhibitor, sodium orthovanadate, could reverse the EGFR dephosphorylation effects induced by microtubule targeting agents. The EGFR dephosphorylation could be reversed by a tyrosine phosphatase inhibitor, indicating that disruption of the microtubule network may lead to activation of a protein tyrosine phosphatasc (PTP) that can regulate EGFR phosphorylation and activation, an effect of potential clinical relevance for combination therapies in patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16
Type of publication
journal article (14)
other publication (1)
doctoral thesis (1)
Type of content
peer-reviewed (13)
other academic/artistic (3)
Author/Editor
Sooman, Linda (15)
Bergqvist, Michael (12)
Lennartsson, Johan (12)
Gullbo, Joachim (11)
Ekman, Simon (10)
Pontén, Fredrik (6)
show more...
Blomquist, Erik (6)
Edqvist, Per-Henrik (4)
Johansson, Fredrik (3)
Navani, Sanjay (3)
Bergström, Stefan (3)
Uhlén, Mathias (2)
Wickström, Malin (2)
Alafuzoff, Irina (2)
Fryknäs, Mårten (2)
Isaksson, Anders (2)
Agnarsdóttir, Margré ... (2)
Hedstrand, Håkan (2)
Bergstrom, S (2)
Oliw, Ernst H. (2)
Ekman, S (2)
Andersson, Claes (2)
Smits, Anja (2)
Larsson, Rolf (1)
Johansson, M (1)
Bolander, Åsa (1)
Strömberg, Sara (1)
Hesselius, Patrik (1)
Popova, Svetlana (1)
Rexhepaj, Elton (1)
Gallagher, William (1)
Bolander, Asa (1)
Stromberg, Sara (1)
Gedda, Lars (1)
Hesselager, Göran (1)
Lundholm, Lovisa (1)
Wanders, A (1)
Popova, Svetlana N. (1)
Johansson, Mikael (1)
Melin, Beatrice (1)
Dimberg, Anna (1)
Hamberg, Mats (1)
Dyrager, Christine (1)
Tchougounova, Elena (1)
Viktorsson, Kristina (1)
Lewensohn, Rolf (1)
Göransson Kultima, H ... (1)
Hesselius, P (1)
Kultima, Hanna Göran ... (1)
Freyhult, Eva (1)
show less...
University
Uppsala University (16)
Umeå University (7)
Karolinska Institutet (4)
Royal Institute of Technology (1)
Language
English (15)
Undefined language (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (9)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view