SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stier Philip) "

Search: WFRF:(Stier Philip)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Artaxo, Paulo, et al. (author)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • In: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Research review (peer-reviewed)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Engström, Anders, 1982- (author)
  • Aerosol-cloud interaction from an observational and modeling perspective
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Clouds may respond strongly to changes in the atmospheric aerosol population, and the response of clouds to an increased global aerosol burden could to some extent mask the warming caused by enhanced greenhouse gas concentrations. However, estimates of the impact of aerosols on cloud properties are associated with large uncertainties, both because of difficulties representing the aerosol-cloud interaction within models, and because of problems of unequivocally isolating the effect of aerosols on cloud properties in observational data. This thesis focuses in part on underlying meteorological factors that significantly correlate with both aerosol and cloud properties, and on how sensitive clouds are to small variations in meteorological conditions. It was found that meteorological covariations must be taken into account when estimating the strength of the relationship between aerosols and cloud properties. By studying the response of shallow convective clouds to perturbations in meteorological conditions and aerosol concentration, it was further concluded that variations in meteorological conditions can enhance or mask the relationship between aerosols and cloud properties, making it difficult to isolate the aerosol signature from small meteorological differences. Additionally, the impact of deep convective clouds on the redistribution of aerosols within a cloud life cycle is examined. It was found that mid-tropospheric aerosols can have a substantial source in evaporating cloud droplets within deep convection. Lastly, this thesis focuses on the implications of meteorological analysis uncertainties, in part related to the difficulties of constraining meteorological variability in observational data of clouds and aerosols, but mainly the impact of analysis errors on atmospheric trajectory calculations. A method is presented to consistently estimate the uncertainty in trajectory calculations. It was concluded that the spatial and temporal trajectory error can be substantially underestimated if the analysis error is not taken into account.
  •  
3.
  • Fanourgakis, George S., et al. (author)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Journal article (peer-reviewed)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
4.
  • Fredriksson, Matilda (author)
  • Fostran till anställningsbarhet : Ungas berättelser inifrån den kommunala arbetsmarknadspolitiken
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • The issue of unemployment has become individualised. In recent decades, Swedish social- and labour market policies have changed towards an emphasis on activation, which places greater demands on the job seeker to actively seek work, participate in employment initiatives and improve their employability. This thesis studies how these requirements are expressed in the municipal acti­vation of young people (18-29 years of age). The purpose of the study is to highlight and problematise the activation’s creation of employable individuals and its consequences for young people’s identity work.The study is based on ethnographic field work in an activation programme. The data consists of field notes, interviews and audio recordings from the pro­gramme’s daily activities and the young people’s tripartite meetings with pub­lic employment officers, which are also attended by staff from the activation programme. Based on Goffman’s perspective on total institutions and an inter­actionist, discursive and narrative approach, the study illustrates activation from the point of view of the programme participants’ own perspectives and narratives.The analysis shows how the programme screens young people from their environment and at the same time monitors and controls them. A daily sched­ule has to be followed, which means that all the young people do the same activity at the same time. The analysis identifies the prominent discourses that set the framework for the design of the activation and the everyday activities, as well as how the young people’s situations and needs are understood. The participants are categorised as “problem young people” with faults and fail­ings. Included in the activation is a desire to change them into employable and capable individuals who can fit into the adult world. However, it is the young people who are responsible for working on themselves in accordance with the prevailing ideals. Thus, it is not primarily about reinforcing their competences in aspects like education and experience of working life. Rather, the young peo­ple are encouraged to adopt new ways of thinking and characteristics, such as being active, flexible, reflexive, well-behaved and accepting responsibility. They are challenged to show motivation, self-confidence and social and com­munica­tive skills. By encouraging the young people to change themselves and adopt certain personal characteristics, the activation conveys the image of un­employment as a personal problem that requires a personal solution, rather than a social problem. In the young people’s narratives, the activation is depicted as meaningless in that the programme does not lead to employment. At the same time, the young people say that the programme has given them new values and ways of seeing themselves. The activation can therefore be understood as a practice of normalisation as well as a semi-total institution that disciplines and changes the participants.
  •  
5.
  • Ghan, Steven, et al. (author)
  • Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:21, s. 5804-5811
  • Journal article (peer-reviewed)abstract
    • A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.
  •  
6.
  • Gryspeerdt, Edward, et al. (author)
  • Constraining the instantaneous aerosol influence on cloud albedo
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:19, s. 4899-4904
  • Journal article (peer-reviewed)abstract
    • Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.
  •  
7.
  • Lowe, Samuel, et al. (author)
  • Inverse modelling of Kohler theory - Part 1 : A response surface analysis of CCN spectra with respect to surface-active organic species
  • 2016
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:17, s. 10941-10963
  • Journal article (peer-reviewed)abstract
    • In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN) spectra is developed using Kohler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk-surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol-CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Kohler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte Carlo Markov Chain (MCMC) approach to constraining parametric uncertainties. A complete treatment of bulk-surface partitioning is shown to predict CCN spectra similar to those calculated using classical Kohler theory with the surface tension of a pure water drop, as found in previous studies. In addition, model sensitivity to perturbations in the partitioning parameters was found to be negligible. As a result, this study supports previously held recommendations that complex surfactant effects might be neglected, and the continued use of classical Kohler theory in global climate models (GCMs) is recommended to avoid an additional computational burden. The framework developed is suitable for application to many additional composition-dependent processes that might impact CCN activation potential. However, the focus of this study is to demonstrate the efficacy of the applied sensitivity analysis to identify important parameters in those processes and will be extended to facilitate a global sensitivity analysis and inverse aerosol-CCN closure analysis.
  •  
8.
  • Malavelle, Florent F., et al. (author)
  • Strong constraints on aerosol-cloud interactions from volcanic eruptions
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 546:7659, s. 485-491
  • Journal article (peer-reviewed)abstract
    • Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
  •  
9.
  • Quaas, Johannes, et al. (author)
  • Constraining the Twomey effect from satellite observations : issues and perspectives
  • 2020
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 15079-15099
  • Journal article (peer-reviewed)abstract
    • The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol-cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to Delta N-d, (ant) ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (N-d) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, Delta N-d, (ant), remains uncertain. The discrepancy between process under-standing at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining Delta N-d, (ant) namely the quantification of (i) the cloud-active aerosol - the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) N-d, (iii) the statistical approach for inferring the sensitivity of N-d to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of N-d, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the N-d-to-CCN sensitivity, key issues are the updraught distributions and the role of N-d sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect.
  •  
10.
  • Zhang, Shipeng, et al. (author)
  • On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models
  • 2016
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:5, s. 2765-2783
  • Journal article (peer-reviewed)abstract
    • Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (omega(500)), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (omega(500)aEuro-aEuro parts per thousand < aEuro-a'25 hPa day(-1)) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day(-1)) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10
Type of publication
journal article (7)
doctoral thesis (2)
research review (1)
Type of content
peer-reviewed (8)
other academic/artistic (2)
Author/Editor
Zhang, Kai (3)
Decesari, Stefano (2)
Yang, Yang (1)
Rinne, J (1)
Boucher, Olivier (1)
Nilsson, Mats (1)
show more...
Peichl, Matthias (1)
Tesche, Matthias (1)
Hansson, Hans-Christ ... (1)
Ekman, Annica M. L. (1)
Kirkevåg, Alf (1)
Riipinen, Ilona (1)
Zieger, Paul (1)
Krejci, Radovan (1)
Bellouin, Nicolas (1)
Swietlicki, Erik (1)
Artaxo, Paulo (1)
Kristjánsson, Jón Eg ... (1)
Tunved, Peter (1)
Carbone, Samara (1)
Lehtipalo, Katrianne (1)
Kulmala, Markku (1)
Östlund, Gunnel, ass ... (1)
Mohr, Claudia (1)
Allan, Richard P. (1)
Andreae, Meinrat O. (1)
Bäck, Jaana (1)
Alves, Eliane Gomes (1)
Barbosa, Henrique M. ... (1)
Bender, Frida, 1978- (1)
Bourtsoukidis, Efstr ... (1)
Chi, Jinshu (1)
Després, Viviane R. (1)
Ditas, Florian (1)
Swietlicki, E. (1)
Fuzzi, Sandro (1)
Hasselquist, Niles (1)
Heintzenberg, Jost (1)
Holanda, Bruna A. (1)
Guenther, Alex (1)
Hakola, Hannele (1)
Heikkinen, Liine (1)
Kerminen, Veli-Matti (1)
Kontkanen, Jenni (1)
Lavric, Jost V. (1)
de Leeuw, Gerrit (1)
Machado, Luiz August ... (1)
McFiggans, Gordon (1)
Franco, Marco Aureli ... (1)
Meller, Bruno Backes (1)
show less...
University
Stockholm University (8)
Lund University (2)
Mälardalen University (1)
Swedish University of Agricultural Sciences (1)
Language
English (9)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (9)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view