SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Story T.) "

Search: WFRF:(Story T.)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kim, Jae-Young, et al. (author)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Journal article (peer-reviewed)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
2.
  • Dziawa, P., et al. (author)
  • Defect Free PbTe Nanowires Grown by Molecular Beam Epitaxy on GaAs(111)B Substrates
  • 2010
  • In: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 10:1, s. 109-113
  • Journal article (peer-reviewed)abstract
    • The molecular beam epitaxial growth of PbTe nanowires oil GaAs(111)B substrates is reported. The growth process was based oil the Au-catalyzed vapor-liquid-solid mechanism. These nanowires grow along the [100] axis; they are perpendicular to the substrate, have tapered shapes, and have diameters of about 90 rim at the base and 60 run at the top. High resolution transmission electron microscopy pictures reveal that the PbTe nanowires have a rock-salt structure and, in contrast to the one-dimensional structures of III-V and II-VI compound semiconductors such as GaAs. InAs, or ZnTe, are free from stacking faults. A theoretical analysis of these experimental findings, which is based oil ab initio modeling of the PbTe nanowires, is also presented.
  •  
3.
  • Lonnroth, K, et al. (author)
  • Towards tuberculosis elimination: an action framework for low-incidence countries
  • 2015
  • In: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 45:4, s. 928-952
  • Journal article (peer-reviewed)abstract
    • This paper describes an action framework for countries with low tuberculosis (TB) incidence (<100 TB cases per million population) that are striving for TB elimination. The framework sets out priority interventions required for these countries to progress first towards “pre-elimination” (<10 cases per million) and eventually the elimination of TB as a public health problem (less than one case per million). TB epidemiology in most low-incidence countries is characterised by a low rate of transmission in the general population, occasional outbreaks, a majority of TB cases generated from progression of latent TB infection (LTBI) rather than local transmission, concentration to certain vulnerable and hard-to-reach risk groups, and challenges posed by cross-border migration. Common health system challenges are that political commitment, funding, clinical expertise and general awareness of TB diminishes as TB incidence falls. The framework presents a tailored response to these challenges, grouped into eight priority action areas: 1) ensure political commitment, funding and stewardship for planning and essential services; 2) address the most vulnerable and hard-to-reach groups; 3) address special needs of migrants and cross-border issues; 4) undertake screening for active TB and LTBI in TB contacts and selected high-risk groups, and provide appropriate treatment; 5) optimise the prevention and care of drug-resistant TB; 6) ensure continued surveillance, programme monitoring and evaluation and case-based data management; 7) invest in research and new tools; and 8) support global TB prevention, care and control. The overall approach needs to be multisectorial, focusing on equitable access to high-quality diagnosis and care, and on addressing the social determinants of TB. Because of increasing globalisation and population mobility, the response needs to have both national and global dimensions.
  •  
4.
  • Dziawa, P., et al. (author)
  • Topological crystalline insulator states in Pb1-xSnxSe
  • 2012
  • In: Nature Materials. - 1476-1122 .- 1476-4660. ; 11:12, s. 1023-1027
  • Journal article (peer-reviewed)abstract
    • Topological insulators are a class of quantum materials in which time-reversal symmetry, relativistic effects and an inverted band structure result in the occurrence of electronic metallic states on the surfaces of insulating bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical results have suggested the existence of topological crystalline insulators (TCIs), a class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in ensuring topological protection(1,2). In this study we show that the narrow-gap semiconductor Pb1-xSnxSe is a TCI for x = 0.23. Temperature-dependent angle-resolved photoelectron spectroscopy demonstrates that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a TCI. These experimental findings add a new class to the family of topological insulators, and we anticipate that they will lead to a considerable body of further research as well as detailed studies of topological phase transitions.
  •  
5.
  •  
6.
  • Kowalski, B. J., et al. (author)
  • Angle-resolved photoemission study and pseudopotential calculations of GeTe and Ge1-xMnxTe band structure
  • 2010
  • In: Physics Procedia. - : Elsevier BV. - 1875-3892. ; 3:2, s. 1357-1362
  • Journal article (peer-reviewed)abstract
    • The valence band structure along the Γ-T and T-W-L directions in the Brillouin zone of GeTe is studied by means of angle-resolved photoemission and compared with the results of ab initio pseudopotential calculations. For Ge1-xMnxTe surface alloy, changes in the valence band induced by presence of Mn atoms are revealed.
  •  
7.
  • Polley, Craig, et al. (author)
  • Observation of topological crystalline insulator surface states on (111)-oriented Pb1-xSnxSe films
  • 2014
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 89:7, s. 075317-
  • Journal article (peer-reviewed)abstract
    • We present angle-resolved photoemission spectroscopy measurements of the surface states on in-situ grown (111) oriented films of Pb1-xSnxSe, a three-dimensional topological crystalline insulator. We observe surface states with Dirac-like dispersion at (Gamma) over bar and (M) over bar in the surface Brillouin zone, supporting recent theoretical predictions for this family of materials. We study the parallel dispersion isotropy and Dirac-point binding energy of the surface states, and perform tight-binding calculations to support our findings. The relative simplicity of the growth technique is encouraging, and suggests a clear path for future investigations into the role of strain, vicinality, and alternative surface orientations in (Pb,Sn)Se solid solutions.
  •  
8.
  •  
9.
  • Wojek, Bastian M., et al. (author)
  • Band inversion and the topological phase transition in (Pb,Sn)Se
  • 2014
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 90:16, s. 161202-
  • Journal article (peer-reviewed)abstract
    • The recent discovery of a topological phase transition in IV-VI narrow-gap semiconductors has revitalized the decades-old interest in the bulk band inversion occurring in these materials. Here we systematically study the (001) surface states of Pb1-xSnxSe mixed crystals by means of angle-resolved photoelectron spectroscopy in the parameter space 0 <= x <= 0.37 and 300 K >= T >= 9 K. Using the surface-state observations, we monitor directly the topological phase transition in this solid solution and gain valuable information on the evolution of the underlying fundamental band gap of the system. In contrast to common model expectations, the band-gap evolution appears to be nonlinear as a function of the studied parameters, resulting in the measuring of a discontinuous band-inversion process. This finding signifies that the anticipated gapless bulk state is in fact not a stable configuration and that the topological phase transition therefore exhibits features akin to a first-order transition.
  •  
10.
  • Wojek, Bastian M., et al. (author)
  • Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator
  • 2015
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6
  • Journal article (peer-reviewed)abstract
    • Since the advent of topological insulators hosting Dirac surface states, efforts have been made to gap these states in a controllable way. A new route to accomplish this was opened up by the discovery of topological crystalline insulators where the topological states are protected by crystal symmetries and thus prone to gap formation by structural changes of the lattice. Here we show a temperature-driven gap opening in Dirac surface states within the topological crystalline insulator phase in (Pb,Sn) Se. By using angle-resolved photoelectron spectroscopy, the gap formation and mass acquisition is studied as a function of composition and temperature. The resulting observations lead to the addition of a temperature-and composition-dependent boundary between massless and massive Dirac states in the topological phase diagram for (Pb,Sn) Se (001). Overall, our results experimentally establish the possibility to tune between massless and massive topological states on the surface of a topological system.
  •  
11.
  • Wojek, Bastian M., et al. (author)
  • Spin-polarized (001) surface states of the topological crystalline insulator Pb0.73Sn0.27Se
  • 2013
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 87:11, s. 115106-
  • Journal article (peer-reviewed)abstract
    • We study the nature of (001) surface states in Pb0.73Sn0.27Se in the newly discovered topological-crystalline-insulator (TCI) phase as well as the corresponding topologically trivial state above the band-gap-inversion temperature. Our calculations predict not only metallic surface states with a nontrivial chiral spin structure for the TCI case, but also nonmetallic (gapped) surface states with nonzero spin polarization when the system is a normal insulator. For both phases, angle- and spin-resolved photoelectron spectroscopy measurements provide conclusive evidence for the formation of these (001) surface states in Pb0.73Sn0.27Se, as well as for their chiral spin structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view