SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stranneheim Henrik) "

Search: WFRF:(Stranneheim Henrik)

  • Result 1-27 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Andeer, Robin, et al. (author)
  • Chanjo : Clincal grade sequence coverage analysis
  • 2020
  • In: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9
  • Journal article (peer-reviewed)abstract
    • Coverage analysis is essential when analysing massive parallel sequencing (MPS) data. The analysis indicates existence of false negatives or positives in a region of interest or poorly covered genomic regions. There are several tools that have excellent performance when doing coverage analysis on a few samples with predefined regions. However, there is no current tool for collecting samples over a longer period of time for aggregated coverage analysis of multiple samples or sequencing methods. Furthermore, current coverage analysis tools do not generate customized coverage reports or enable exploratory coverage analysis without extensive bioinformatic skill and access to the original alignment files. We present Chanjo, a user friendly coverage analysis tool for persistent storage of coverage data, that, accompanied with Chanjo Report, produces coverage reports that summarize coverage data for predefined regions in an elegant manner. Chanjo Report can produce both structured coverage reports and dynamic reports tailored to a subset of genomic regions, coverage cut-offs or samples. Chanjo stores data in an SQL database where thousands of samples can be added over time, which allows for aggregate queries to discover problematic regions. Chanjo is well tested, supports whole exome and genome sequencing, and follows common UNIX standards, allowing for easy integration into existing pipelines. Chanjo is easy to install and operate, and provides a solution for persistent coverage analysis and clinical-grade reporting. It makes it easy to set up a local database and automate the addition of multiple samples and report generation. To our knowledge there is no other tool with matching capabilities. Chanjo handles the common file formats in genetics, such as BED and BAM, and makes it easy to produce PDF coverage reports that are highly valuable for individuals with limited bioinformatic expertise. We believe Chanjo to be a vital tool for clinicians and researchers performing MPS analysis.
  •  
3.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
4.
  • Davanian, H., et al. (author)
  • Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing
  • 2012
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9, s. e46440-
  • Journal article (peer-reviewed)abstract
    • Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Lindstrand, Anna, et al. (author)
  • From cytogenetics to cytogenomics : whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability
  • 2019
  • In: Genome Medicine. - : BMC. - 1756-994X. ; 11:1
  • Journal article (peer-reviewed)abstract
    • BackgroundSince different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test.MethodsWe analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n=68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n=156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure.ResultsFirst, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850kb (min 500bp, max 155Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (>10kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data.Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively.ConclusionThe overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
9.
  • Lundin, Sverker, et al. (author)
  • Increased Throughput by Parallelization of Library Preparation for Massive Sequencing
  • 2010
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:3, s. e10029-
  • Journal article (peer-reviewed)abstract
    • Background: Massively parallel sequencing systems continue to improve on data output, while leaving labor-intensive library preparations a potential bottleneck. Efforts are currently under way to relieve the crucial and time-consuming work to prepare DNA for high-throughput sequencing. Methodology/Principal Findings: In this study, we demonstrate an automated parallel library preparation protocol using generic carboxylic acid-coated superparamagnetic beads and polyethylene glycol precipitation as a reproducible and flexible method for DNA fragment length separation. With this approach the library preparation for DNA sequencing can easily be adjusted to a desired fragment length. The automated protocol, here demonstrated using the GS FLX Titanium instrument, was compared to the standard manual library preparation, showing higher yield, throughput and great reproducibility. In addition, 12 libraries were prepared and uniquely tagged in parallel, and the distribution of sequence reads between these indexed samples could be improved using quantitative PCR-assisted pooling. Conclusions/Significance: We present a novel automated procedure that makes it possible to prepare 36 indexed libraries per person and day, which can be increased to up to 96 libraries processed simultaneously. The yield, speed and robust performance of the protocol constitute a substantial improvement to present manual methods, without the need of extensive equipment investments. The described procedure enables a considerable efficiency increase for small to midsize sequencing centers.
  •  
10.
  • Magnusson, Måns, et al. (author)
  • Loqusdb : added value of an observations database of local genomic variation
  • 2020
  • In: BMC Bioinformatics. - : Springer Nature. - 1471-2105. ; 21:1
  • Journal article (peer-reviewed)abstract
    • Background Exome and genome sequencing is becoming the method of choice for rare disease diagnostics. One of the key challenges remaining is distinguishing the disease causing variants from the benign background variation. After analysis and annotation of the sequencing data there are typically thousands of candidate variants requiring further investigation. One of the most effective and least biased ways to reduce this number is to assess the rarity of a variant in any population. Currently, there are a number of reliable sources of information for major population frequencies when considering single nucleotide variants (SNVs) and small insertion and deletions (INDELs), with gnomAD as the most prominent public resource available. However, local variation or frequencies in sub-populations may be underrepresented in these public resources. In contrast, for structural variation (SV), the background frequency in the general population is more or less unknown mostly due to challenges in calling SVs in a consistent way. Keeping track of local variation is one way to overcome these problems and significantly reduce the number of potential disease causing variants retained for manual inspection, both for SNVs and SVs. Results Here, we present loqusdb, a tool to solve the challenge of keeping track of any type of variant observations from genome sequencing data. Loqusdb was designed to handle a large flow of samples and unlike other solutions, samples can be added continuously to the database without rebuilding it, facilitating improvements and additions. We assessed the added value of a local observations database using 98 samples annotated with information from a background of 888 unrelated individuals. Conclusions We show both how powerful SV analysis can be when filtering for population frequencies and how the number of apparently rare SNVs/INDELs can be reduced by adding local population information even after annotating the data with other large frequency databases, such as gnomAD. In conclusion, we show that a local frequency database is an attractive, and a necessary addition to the publicly available databases that facilitate the analysis of exome and genome data in a clinical setting.
  •  
11.
  •  
12.
  •  
13.
  • Nätt, Daniel, et al. (author)
  • Inheritance of Acquired Behaviour Adaptions and Brain Gene Expression in Chickens
  • 2009
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:7, s. e6405-
  • Research review (other academic/artistic)abstract
    • Background: Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings: Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12:12 h light:dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance: Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. Citation: Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405 Editor: Tom Pizzari, University of Oxford, United Kingdom Received: March 26, 2009; Accepted: June 30, 2009; Published: July 28, 2009 Copyright: © 2009 Nätt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This project was funded by the Swedish Research Council (VR; www.vr.se; grant nrs 50280101 and 50280102) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas; www.formas.se; grant no 221-2005-270). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the mauscript. Competing interests: The authors have declared that no competing interests exist.  
  •  
14.
  •  
15.
  • Rasi, Chiara, et al. (author)
  • PatientMatcher : A customizable Python-based open-source tool for matching undiagnosed rare disease patients via the Matchmaker Exchange network
  • 2022
  • In: Human Mutation. - : Wiley. - 1059-7794 .- 1098-1004. ; 43:6, s. 708-716
  • Journal article (peer-reviewed)abstract
    • The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype–phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by “matching” the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications. 
  •  
16.
  • Stodberg, Tommy, et al. (author)
  • Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures
  • 2015
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Journal article (peer-reviewed)abstract
    • The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.
  •  
17.
  • Stranneheim, Henrik, et al. (author)
  • A comparison between protein profiles of B cell subpopulations and mantle cell lymphoma cells
  • 2009
  • In: Proteome Science. - : Springer Science and Business Media LLC. - 1477-5956. ; 7, s. 43-
  • Journal article (peer-reviewed)abstract
    • Background: B-cell lymphomas are thought to reflect different stages of B-cell maturation. Based on cytogenetics and molecular markers, mantle cell lymphoma (MCL) is presumed to derive predominantly from naive, pre-germinal centre (pre-GC) B lymphocytes. The aim of this study was to develop a method to investigate the similarity between MCL cells and different B-cell compartments on a protein expression level. Methods: Subpopulations of B cells representing the germinal centre (GC), the pre-GC mantle zone and the post-GC marginal zone were isolated from tonsils using automated magnetic cell sorting (AutoMACS) of cells based on their expression of CD27 and IgD. Protein profiling of the B cell subsets, of cell lines representing different lymphomas and of primary MCL samples was performed using top-down proteomics profiling by surface-enhanced laser detection/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: Quantitative MS data of significant protein peaks (p-value < 0.05) separating the three B-cell subpopulations were generated. Together, hierarchical clustering and principal component analysis (PCA) showed that the primary MCL samples clustered together with the pre- and post-GC subpopulations. Both primary MCL cells and MCL cell lines were clearly separated from the B cells representing the GC compartment. Conclusion: AutoMACS sorting generates sufficient purity to enable a comparison between protein profiles of B cell subpopulations and malignant B lymphocytes applying SELDI-TOF-MS. Further validation with an increased number of patient samples and identification of differentially expressed proteins would enable a search for possible treatment targets that are expressed during the early development of MCL.
  •  
18.
  • Stranneheim, Henrik, et al. (author)
  • ­A strategy for identifying nuclear modifier genes by massively parallel whole-genome sequencing
  • Other publication (other academic/artistic)abstract
    • Leber hereditary optic neuropathy (LHON) results from mutations in mtDNA, butadditional factors are required for disease expression. LHON is thus a model for theconcept of modifiers affecting expression of single gene diseases. No modifier factorhas yet been clearly identified. Here we describe a large, consanguineous familyaffected by LHON with offspring showing variable disease expression. This providesan opportunity to investigate the presence of nuclear modifiers in homozygousgenomic regions. We analyzed genomes from six members, parents and foursiblings. Each genome was sequenced to >23x coverage and approximately 3.8million single nucleotide variants and small indels per individual were called, where17,000‐20,000 were located in the exome. As a first step, we hypothesize that amodifier gene affecting penetrance of the LHON mutation, and another modifiergene predisposing to an aggravated phenotype, are located in the protein‐codingparts of the genome (the exome). As we gain experience in data analysis, this can befollowed by extended analyses of additional genomic regions. Our initial, simplehypothesis generated five lists of candidate modifier genes, conforming to fivedifferent models of inheritance. In total, 86 candidate genes were identified and 11of these genes contained 14 variants that were further validated by Sangersequencing. Additional Sanger validation in another two affected siblings reducedthe number of candidate genes to two potential disease‐causing variants.
  •  
19.
  • Stranneheim, Henrik, et al. (author)
  • Classification of DNA sequences using Bloom filters
  • 2010
  • In: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 26:13, s. 1595-1600
  • Journal article (peer-reviewed)abstract
    • Motivation: New generation sequencing technologies producing increasingly complex datasets demand new efficient and specialized sequence analysis algorithms. Often, it is only the 'novel' sequences in a complex dataset that are of interest and the superfluous sequences need to be removed. Results: A novel algorithm, fast and accurate classification of sequences (FACSs), is introduced that can accurately and rapidly classify sequences as belonging or not belonging to a reference sequence. FACS was first optimized and validated using a synthetic metagenome dataset. An experimental metagenome dataset was then used to show that FACS achieves comparable accuracy as BLAT and SSAHA2 but is at least 21 times faster in classifying sequences.
  •  
20.
  • Stranneheim, Henrik (author)
  • Enabling massive genomic and transcriptomic analysis
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • In recent years there have been tremendous advances in our ability to rapidly and cost-effectively sequence DNA. This has revolutionized the fields of genetics and biology, leading to a deeper understanding of the molecular events in life processes. The rapid advances have enormously expanded sequencing opportunities and applications, but also imposed heavy strains on steps prior to sequencing, as well as the subsequent handling and analysis of the massive amounts of sequence data that are generated, in order to exploit the full capacity of these novel platforms. The work presented in this thesis (based on six appended papers) has contributed to balancing the sequencing process by developing techniques to accelerate the rate-limiting steps prior to sequencing, facilitating sequence data analysis and applying the novel techniques to address biological questions.   Papers I and II describe techniques to eliminate expensive and time-consuming preparatory steps through automating library preparation procedures prior to sequencing. The automated procedures were benchmarked against standard manual procedures and were found to substantially increase throughput while maintaining high reproducibility. In Paper III, a novel algorithm for fast classification of sequences in complex datasets is described. The algorithm was first optimized and validated using a synthetic metagenome dataset and then shown to enable faster analysis of an experimental metagenome dataset than conventional long-read aligners, with similar accuracy. Paper IV, presents an investigation of the molecular effects on the p53 gene of exposing human skin to sunlight during the course of a summer holiday. There was evidence of previously accumulated persistent p53 mutations in 14% of all epidermal cells. Most of these mutations are likely to be passenger events, as the affected cell compartments showed no apparent growth advantage. An annual rate of 35,000 novel sun-induced persistent p53 mutations was estimated to occur in sun-exposed skin of a human individual.  Paper V, assesses the effect of using RNA obtained from whole cell extracts (total RNA) or cytoplasmic RNA on quantifying transcripts detected in subsequent analysis. Overall, more differentially detected genes were identified when using the cytoplasmic RNA. The major reason for this is related to the reduced complexity of cytoplasmic RNA, but also apparently due (at least partly) to the nuclear retention of transcripts with long, structured 5’- and 3’-untranslated regions or long protein coding sequences. The last paper, VI, describes whole-genome sequencing of a large, consanguineous family with a history of Leber hereditary optic neuropathy (LHON) on the maternal side. The analysis identified new candidate genes, which could be important in the aetiology of LHON. However, these candidates require further validation before any firm conclusions can be drawn regarding their contribution to the manifestation of LHON.
  •  
21.
  • Stranneheim, Henrik, et al. (author)
  • Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism
  • 2014
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15, s. 1090-
  • Journal article (peer-reviewed)abstract
    • Background: Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. Results: We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. Conclusions: We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are investigated and as clinical specialists take responsibility for translation of results. As follow-up in patients without any known IEM, filters can be lifted and the full genome investigated, after genetic counselling and informed consent.
  •  
22.
  • Stranneheim, Henrik, et al. (author)
  • Scalable Transcriptome Preparation for Massive Parallel Sequencing
  • 2011
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7, s. e21910-
  • Journal article (peer-reviewed)abstract
    • Background: The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. Methodology: In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was compared to the standard manual sample preparation. Conclusion/Significance: The automated procedure was used to generate libraries for gene expression profiling on the Illumina HiSeq 2000 platform with the capacity of 12 samples per preparation with a significantly improved throughput compared to the standard manual preparation. The data analysis shows consistent gene expression profiles in terms of sensitivity and quantification of gene expression between the two library preparation methods.
  •  
23.
  • Stranneheim, Henrik, et al. (author)
  • Stepping stones in DNA sequencing
  • 2012
  • In: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 7:9, s. 1063-1073
  • Research review (peer-reviewed)abstract
    • In recent years there have been tremendous advances in our ability to rapidly and cost-effectively sequence DNA. This has revolutionized the fields of genetics and biology, leading to a deeper understanding of the molecular events in life processes. The rapid technological advances have enormously expanded sequencing opportunities and applications, but also imposed strains and challenges on steps prior to sequencing and in the downstream process of handling and analysis of these massive amounts of sequence data. Traditionally, sequencing has been limited to small DNA fragments of approximately one thousand bases (derived from the organism's genome) due to issues in maintaining a high sequence quality and accuracy for longer read lengths. Although many technological breakthroughs have been made, currently the commercially available massively parallel sequencing methods have not been able to resolve this issue. However, recent announcements in nanopore sequencing hold the promise of removing this read-length limitation, enabling sequencing of larger intact DNA fragments. The ability to sequence longer intact DNA with high accuracy is a major stepping stone towards greatly simplifying the downstream analysis and increasing the power of sequencing compared to today. This review covers some of the technical advances in sequencing that have opened up new frontiers in genomics.
  •  
24.
  • Stranneheim, Henrik, et al. (author)
  • Transcript nuclear retention effects quantification of gene expression levels
  • Other publication (other academic/artistic)abstract
    • The majority of published differential gene expression studies have used RNA isolated from whole cell extracts (total RNA), overlooking the potential impact of including the nuclear transcriptome in the analyses. It has not been firmly established that the contribution of nuclear RNA is negligible or how the inclusion of it affects quantification of gene expression. Previous studies have estimated that the nuclear transcriptome is five to ten times more complex than the cytoplasmic [1]. Hence, RNA purified solely from the cytoplasm should have fewer unique transcripts, resulting in more sequence counts per transcript and resulting in increased power to detect remaining transcripts. In this study, cytoplasmic and total mRNA have been prepared from three human cell‐lines and sequenced using massive parallel sequencing. The resulting sequence data was analyzed regarding the effect of number of biological replicates, read length and transcripts fractionation on calling differentially detected genes. In addition, the impact of length and secondary structure of mRNAs un‐translated regions (UTRs), and coding sequence length on nucleus to cytoplasm transportation rates of mRNAs was studied. We observe that the number of differentially detected genes was not significantly increased by adding more than three biological replicates or by increasing the sequence read length > 35bp. More differentially detected genes were found in the cytoplasmic RNA compared to the total RNA and a nuclear retention effect was observed for transcripts with long and structured 5’‐ and 3’‐UTR or long protein coding sequences.
  •  
25.
  • Ståhl, Patrik L., et al. (author)
  • Sun-Induced Nonsynonymous p53 Mutations Are Extensively Accumulated and Tolerated in Normal Appearing Human Skin
  • 2011
  • In: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 131:2, s. 504-508
  • Journal article (peer-reviewed)abstract
    • Here we demonstrate that intermittently sun-exposed human skin contains an extensive number of phenotypically intact cell compartments bearing missense and nonsense mutations in the p53 tumor suppressor gene. Deep sequencing of sun-exposed and shielded microdissected skin from mid-life individuals revealed that persistent p53 mutations had accumulated in 14% of all epidermal cells, with no apparent signs of a growth advantage of the affected cell compartments. Furthermore, 6% of the mutated epidermal cells encoded a truncated protein. The abundance of these events, not taking into account intron mutations and mutations in other genes that also may have functional implications, suggests an extensive tolerance of human cells to severe genetic alterations caused by UV light, with an estimated annual rate of accumulation of similar to 35,000 new persistent protein-altering p53 mutations in sun-exposed skin of a human individual.
  •  
26.
  • Tegelberg, Saara, et al. (author)
  • Respiratory chain complex III deficiency due to mutated BCS1L : A novel phenotype with encephalomyopathy, partially phenocopied in a Bcs1l mutant mouse model
  • 2017
  • In: Orphanet Journal of Rare Diseases. - : Springer Science and Business Media LLC. - 1750-1172. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background: Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide. Results: A case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient's platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency. Conclusions: We describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.
  •  
27.
  • Werne Solnestam, Beata, et al. (author)
  • Comparison of total and cytoplasmic mRNA reveals global regulation by nuclear retention and miRNAs
  • 2012
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 13:1, s. 574-
  • Journal article (peer-reviewed)abstract
    • Background: The majority of published gene-expression studies have used RNA isolated from whole cells, overlooking the potential impact of including nuclear transcriptome in the analyses. In this study, mRNA fractions from the cytoplasm and from whole cells (total RNA) were prepared from three human cell lines and sequenced using massive parallel sequencing. Results: For all three cell lines, of about 15000 detected genes approximately 400 to 1400 genes were detected in different amounts in the cytoplasmic and total RNA fractions. Transcripts detected at higher levels in the total RNA fraction had longer coding sequences and higher number of miRNA target sites. Transcripts detected at higher levels in the cytoplasmic fraction were shorter or contained shorter untranslated regions. Nuclear retention of transcripts and mRNA degradation via miRNA pathway might contribute to this differential detection of genes. The consequence of the differential detection was further investigated by comparison to proteomics data. Interestingly, the expression profiles of cytoplasmic and total RNA correlated equally well with protein abundance levels indicating regulation at a higher level. Conclusions: We conclude that expression levels derived from the total RNA fraction be regarded as an appropriate estimate of the amount of mRNAs present in a given cell population, independent of the coding sequence length or UTRs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-27 of 27
Type of publication
journal article (22)
other publication (2)
research review (2)
doctoral thesis (1)
Type of content
peer-reviewed (16)
other academic/artistic (11)
Author/Editor
Stranneheim, Henrik (27)
Lundeberg, Joakim (12)
Wirta, Valtteri (10)
Wedell, Anna (10)
Nilsson, Daniel (6)
Magnusson, Måns (4)
show more...
Akan, Pelin (3)
Eisfeldt, Jesper (3)
Lundberg, Emma (2)
Magnusson, Mans (2)
Werne Solnestam, Bea ... (2)
Martin, Marcel (2)
Andeer, Robin (2)
Nordgren, Ann (2)
Zhang, Yan (1)
Iwarsson, Erik (1)
Pontén, Fredrik (1)
Wang, Kai (1)
Jansson, L (1)
Huss, Mikael (1)
Persson, Bengt (1)
Fellman, Vineta (1)
Lindvall, Jessica M. (1)
Zhang, Weidong (1)
Jensen, Per (1)
Pettersson, Erik (1)
Taylan, Fulya (1)
Yucel-Lindberg, T (1)
Alexeyenko, Andrey (1)
Lundin, Sverker (1)
Lexow, Preben (1)
Lindberg, Eva (1)
Nennesmo, Inger (1)
Sherwood, Ellen (1)
Lehtio, Janne (1)
Andersson, Emma (1)
Arvestad, Lars (1)
Davanian, H (1)
Allander, Tobias (1)
Fang, Fang (1)
Andersson, Björn (1)
Yandell, Mark (1)
Dahlberg, Mats (1)
Freyer, Christoph (1)
Barbaro, Michela (1)
Bai, Yu (1)
Anderlid, Britt-Mari ... (1)
Holmberg, Kristina (1)
Lundeberg, Joakim, P ... (1)
Grigelioniene, Giedr ... (1)
show less...
University
Royal Institute of Technology (25)
Karolinska Institutet (17)
Stockholm University (4)
Uppsala University (2)
Linköping University (1)
Lund University (1)
Language
English (27)
Research subject (UKÄ/SCB)
Natural sciences (17)
Medical and Health Sciences (9)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view