SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Swain J. D.) "

Search: WFRF:(Swain J. D.)

  • Result 1-47 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G, et al. (author)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Schael, S., et al. (author)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Research review (peer-reviewed)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
9.
  •  
10.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
11.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
12.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
13.
  •  
14.
  • Niederberger, C., et al. (author)
  • Forty years of IVF
  • 2018
  • In: Fertility and Sterility. - : Elsevier BV. - 0015-0282. ; 110:2
  • Journal article (peer-reviewed)abstract
    • This monograph, written by the pioneers of IVF and reproductive medicine, celebrates the history, achievements, and medical advancements made over the last 40 years in this rapidly growing field.
  •  
15.
  • Acharya, B., et al. (author)
  • Search formagnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC
  • 2016
  • In: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :8
  • Journal article (peer-reviewed)abstract
    • The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.
  •  
16.
  •  
17.
  •  
18.
  • Verra, L., et al. (author)
  • Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma
  • 2022
  • In: Physical Review Accelerators and Beams. - : American Physical Society. - 2469-9888. ; 25:7
  • Journal article (peer-reviewed)abstract
    • A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self -modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.
  •  
19.
  •  
20.
  •  
21.
  • Schiller, D, et al. (author)
  • The Human Affectome
  • 2024
  • In: Neuroscience and biobehavioral reviews. - 1873-7528. ; 158, s. 105450-
  • Journal article (peer-reviewed)
  •  
22.
  • Tinetti, G., et al. (author)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Journal article (peer-reviewed)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
23.
  • Nechaeva, T., et al. (author)
  • Hosing of a Long Relativistic Particle Bunch in Plasma
  • 2024
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 132:7
  • Journal article (peer-reviewed)abstract
    • Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, selfmodulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma -based accelerators and represent the first characterization of hosing.
  •  
24.
  • Verra, L., et al. (author)
  • Development of the self-modulation instability of a relativistic proton bunch in plasma
  • 2023
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 30:8
  • Journal article (peer-reviewed)abstract
    • Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Pilla, Rachel M., et al. (author)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Tinetti, G., et al. (author)
  • EChO : Exoplanet characterisation observatory
  • 2012
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 311-353
  • Journal article (peer-reviewed)abstract
    • A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO-the Exoplanet Characterisation Observatory-is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO's configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region-from the visible to the mid-infrared-to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2,000 K, to those of a few Earth masses, with Teq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0. 4-16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1. 5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4-5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework. © 2012 Springer Science+Business Media B.V.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Hartvigsen, J, et al. (author)
  • Leadership and capacity building in chiropractic research: report from the first CARL cohort
  • 2021
  • In: Chiropractic & manual therapies. - : Springer Science and Business Media LLC. - 2045-709X. ; 29:1, s. 9-
  • Journal article (peer-reviewed)abstract
    • The Chiropractic Academy for Research Leadership (CARL) was formed in 2016 in response to a need for a global network of early career researchers and leaders in the chiropractic profession. Thirteen fellows were accepted competitively and have since worked together at residentials and virtually on many research and leadership projects. In 2020, the CARL program ended for this first cohort, and it is now timely to take stock and reflect on the achievements and benefits of the program. In this paper we present the structure of CARL, the scientific and leadership outputs as well as the personal value of CARL for the participating fellows. As a result of the success of the first CARL cohort, organizations from Europe, North America, and Australia have supported a second cohort of 14 CARL fellows, who were competitively accepted into the program in early 2020.
  •  
44.
  • Doubek, Jonathan P., et al. (author)
  • The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
  • 2021
  • In: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:5, s. 1979-1992
  • Journal article (peer-reviewed)abstract
    • The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typically <2 degrees C. Day-to-day temperature change, in the absence of storms, often exceeded storm-induced temperature changes. Because storm-induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
  •  
45.
  •  
46.
  •  
47.
  • Tsolakis, Apostolos V., et al. (author)
  • Clinical prediction rule to determine the need for repeat ERCP after endoscopic treatment of postsurgical bile leaks
  • 2017
  • In: Gastrointestinal Endoscopy. - : MOSBY-ELSEVIER. - 0016-5107 .- 1097-6779. ; 85:5, s. 1047-1056
  • Journal article (peer-reviewed)abstract
    • Background and Aims: In patients who have undergone ERCP with biliary stenting for postsurgical bile leaks, the optimal method (ERCP or gastroscopy) and timing of stent removal is controversial. We developed a clinical prediction rule to identify cases in which a repeat ERCP is unnecessary.Methods: Population-based study of all patients who underwent ERCP for management of surgically induced bile leaks between 2000 and 2012. Multivariate and binary recursive partitioning analyses were performed to generate a rule predicting the absence of biliary pathology on repeat endoscopic evaluation.Results: A total of 259 patients were included. On multivariate analysis, postsurgical normal alkaline phosphatase (ALP; OR, 2.26; 95% CI, 1.03-4.99), time from surgery to first ERCP < 8 days (OR, 2.47; 95% CI, 1.15-5.31), and minor leak with no other pathology on initial ERCP (OR, 6.74; 95% CI, 1.75-25.89) were independently associated with the absence of persistent bile leak and other pathology on repeat ERCP. The derived rule included laparoscopic cholecystectomy, normal postsurgical ALP, minor leak with no other pathology on initial ERCP, and an interval from initial to repeat ERCP between 4 and 8 weeks. When all 4 criteria were met, the rule had a sensitivity of 94% (95% CI, 83%-99%) and a negative predictive value of 93% (95% CI, 81%-99%). Optimism-adjusted sensitivity and negative predictive value were 88% (95% CI, 76%-96%) and 86% (95% CI, 73%-96%), respectively.Conclusions: This clinical decision rule identifies patients who can have their biliary stents removed via gastroscopy, which may improve patient safety and healthcare utilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-47 of 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view