SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Swietlicki Erik) "

Search: WFRF:(Swietlicki Erik)

  • Result 1-50 of 318
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlberg, Erik, et al. (author)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • In: Dagens nyheter (DN debatt). - 1101-2447.
  • Journal article (pop. science, debate, etc.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
2.
  •  
3.
  •  
4.
  • Martinsson, Johan, et al. (author)
  • Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol
  • 2015
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 49:24, s. 14663-14671
  • Journal article (peer-reviewed)abstract
    • The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Angstrom exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.
  •  
5.
  •  
6.
  •  
7.
  • Nilsson, Lovisa, et al. (author)
  • Relating the single particle soot photometer (SP2) signal response to soot maturity
  • In: Aerosol Science and Technology. - 1521-7388.
  • Journal article (peer-reviewed)abstract
    • Light absorbing carbonaceous aerosols produced from combustion span over a range of physicochemical properties. Soot is the most recognized species in this category and its formation process involves gradual maturation from amorphous young soot with a high hydrogen-to-carbon-ratio toward mature soot aggregates. In this work, the optical response of a single particle soot photometer (SP2) to electrical mobility size selected soot of different maturity produced by a mini-CAST soot generator is investigated. The results show that for soot of a specific mobility diameter, the laser-induced incandescence (LII) signal appears earlier and with a higher LII peak height for increasing soot maturity. The experimental observations are supported by simulations using a numerical model for the LII process. Furthermore, the effect of systematically varying the SP2 laser power on the detection of soot of different maturity using LII is explored. This work can be seen as a step toward the aim of using the SP2 instrument to identify soot particles of different maturity in the atmosphere.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Ahlberg, Erik, et al. (author)
  • Measurement report : Black carbon properties and concentrations in southern Sweden urban and rural air-the importance of long-range transport
  • 2023
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3051-3064
  • Journal article (peer-reviewed)abstract
    • Soot, or black carbon (BC), aerosol is a major climate forcer with severe health effects. The impacts depend strongly on particle number concentration, size and mixing state. This work reports on two field campaigns at nearby urban and rural sites, 65gkm apart, in southern Sweden during late summer 2018. BC was measured using a single-particle soot photometer (SP2) and Aethalometers (AE33). Differences in BC concentrations between the sites are driven primarily by local traffic emissions. Equivalent and refractory BC mass concentrations at the urban site were on average a factor 2.2 and 2.5, with peaks during rush hour up to a factor g1/44, higher than the rural background levels. The number fraction of particles containing a soot core was significantly higher in the city. BC particles at the urban site were on average smaller by mass and had less coating owing to fresh traffic emissions. The organic components of the fresh traffic plumes were similar in mass spectral signature to hydrocarbon-like organic aerosol (HOA), commonly associated with traffic. Despite the intense local traffic (g1/4g30g000 vehicles passing per day), PM1, including organic aerosol, was dominated by aged continental air masses even at the curbside site. The fraction of thickly coated particles at the urban site was highly correlated with the mass concentrations of all measured chemical species of PM1, consistent with aged, internally mixed aerosol. Trajectory analysis for the whole year showed that air masses arriving at the rural site from eastern Europe contained approximately double the amount of BC compared to air masses from western Europe. Furthermore, the largest regional emissions of BC transported to the rural site, from the Malmö-Copenhagen urban area, are discernible above background levels only when precipitation events are excluded. We show that continental Europe and not the Malmö-Copenhagen region is the major contributor to the background BC mass concentrations in southern Sweden.
  •  
12.
  • Artaxo, Paulo, et al. (author)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • In: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Research review (peer-reviewed)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Castarède, Dimitri, et al. (author)
  • Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
  • 2023
  • In: Atmospheric Measurement Techniques. - 1867-1381. ; 16:16, s. 3881-3899
  • Journal article (peer-reviewed)abstract
    • The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically oriented parallel-plate CFDC that has been engineered to improve upon the limitations of previous generations of CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared with other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle counts, which demonstrates the potential for PINCii to measure INPs at low concentrations ( < 10 L (-1)). High-spatial-resolution wall-temperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method for analyzing CFDC data based on the most extreme lamina conditions present within the chamber, which represent conditions most likely to trigger ice nucleation. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at temperature and saturation conditions that span the spectrum of PINCii's operational conditions ( 50 <= temperature <= 15 degrees C and 100 <= relative humidity with respect to ice <= 160 %) to demonstrate the instrument's capabilities. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Eriksson, Axel, et al. (author)
  • Diesel soot aging in urban plumes within hours under cold dark and humid conditions
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322.
  • Journal article (peer-reviewed)abstract
    • Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.
  •  
22.
  • Eriksson, Axel, et al. (author)
  • Particulate PAH Emissions from Residential Biomass Combustion : Time-Resolved Analysis with Aerosol Mass Spectrometry
  • 2014
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:12, s. 7143-7150
  • Journal article (peer-reviewed)abstract
    • Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ~ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ~ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.
  •  
23.
  •  
24.
  •  
25.
  • Fors, Erik, et al. (author)
  • Development of an H-TDMA for long-term unattended measurement of the hygroscopic properties of atmospheric aerosol particles
  • 2009
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 2:1, s. 313-318
  • Journal article (peer-reviewed)abstract
    • A new hygroscopic tandem differential mobility analyzer (H-TDMA) has been constructed at Lund University within the frameworks of the EU FP6 Infrastructure Project EUSAAR (www.eusaar.org). The aim of this coordinated H-TDMA development is to design and evaluate a new generation of H-TDMAs that are capable of conducting long term measurements of the hygroscopic growth and state of mixing of sub-micrometer atmospheric aerosol particles at the EUSAAR aerosol super-sites across Europe. The H-TDMA constructed for this project has been validated with respect to hygroscopic growth factor, stability of relative humidity (RH), temperature stability and its ability to operate unattended for longer periods of time. When measuring growth factors of ammonium sulphate, the new H-TDMA system was found to measure within a growth factor deviation of +/- 0.05 compared to previously recorded data by Tang et al. (1994). The long term RH of the system has been found stable at 90.0% with a standard deviation of +/- 0.23% and an average temperature variability of the second DMA less than +/- 0.1 K. Daily automated ammonium sulphate measurements have validated the ambient measurements. The instrument is operated at the EMEP/EUSAAR background station Vavihill in the southern part of Sweden.
  •  
26.
  •  
27.
  • Fors, Erik, et al. (author)
  • Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data
  • 2010
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 10:12, s. 5625-5639
  • Journal article (peer-reviewed)abstract
    • HUmic-LIke Substances (HULIS) have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondonia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) at relative humidity (RH) < 100%, and a cloud condensation nucleus counter (CCNC) at RH > 100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m) and 31% (50.3 mN/m) for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m) and 13% (63.3 mN/m).
  •  
28.
  • Fors, Erik, et al. (author)
  • Hygroscopic properties of the ambient aerosol in southern Sweden - a two year study
  • 2011
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 11:16, s. 8343-8361
  • Journal article (peer-reviewed)abstract
    • The hygroscopic growth of the atmospheric aerosol is a critical parameter for quantifying the anthropogenic radiative forcing. Until now, there has been a lack of long term measurements due to limitations in instrumental techniques. In this work, for the first time the seasonal variation of the hygroscopic properties of a continental background aerosol has been described, based on more than two years of continuous measurements. In addition to this, the diurnal variation of the hygroscopic growth has been investigated, as well as the seasonal variation in CCN concentration. These physical properties of the aerosol have been measured with a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), a Differential Mobility Particle Sizer (DMPS), and a Cloud Condensation Nuclei Counter (CCNC). The results show that smaller particles are generally less hygroscopic than larger ones, and that there is a clear difference in the hygroscopic properties between the Aitken and the accumulation mode. A seasonal cycle was found for all particle sizes. In general, the average hygroscopic growth is lower during wintertime, due to an increase in the relative abundance of less hygroscopic or barely hygroscopic particles. Monthly averages showed that the hygroscopic growth factors of the two dominating hygroscopic modes (one barely hygroscopic and one more hygroscopic) were relatively stable. The hygroscopic growth additionally showed a diurnal cycle, with higher growth factors during day time. CCN predictions based on H-TDMA data underpredicted the activated CCN number concentration with 7% for a 1% water supersaturation ratio. The underprediction increases with decreasing s, most likely due to a combination of measurement and modeling uncertainties. It was found that although the aerosol is often externally mixed, recalculating to an internal mixture with respect to hygroscopicity did not change the CCN concentration as a function of supersaturation significantly.
  •  
29.
  •  
30.
  •  
31.
  • Genberg, Johan, et al. (author)
  • Source apportionment of carbonaceous aerosol in southern Sweden
  • 2011
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:22, s. 11387-11400
  • Journal article (peer-reviewed)abstract
    • A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32%) and fossil fuel combustion (28%) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.
  •  
32.
  •  
33.
  •  
34.
  • Mann, G. W., et al. (author)
  • Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
  • 2014
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4679-4713
  • Journal article (peer-reviewed)abstract
    • Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
  •  
35.
  • Martinsson, Johan, et al. (author)
  • Carbonaceous aerosol source apportionment using the Aethalometer model - evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden
  • 2017
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:6, s. 4265-4281
  • Journal article (peer-reviewed)abstract
    • With the present demand on fast and inexpensive aerosol source apportionment methods, the Aethalometer model was evaluated for a full seasonal cycle (June 2014June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the Aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the model in conjunction with carbon measurements from thermal-optical analysis allowed apportioned non-light-absorbing biogenic aerosol to vary in time. The absorption differences between WB and FF can be quantified by the absorption angstrom ngstrom exponent (AAE). In this study AAE(WB) was set to 1.81 and AAE(FF) to 1.0. Our observations show that the AAE was elevated during winter (1.36 +/- 0.07) compared to summer (1.12 +/- 0.07). Quantified WB aerosol showed good agreement with levoglucosan concentrations, both in terms of correlation (R-2 = 0 : 70) and in comparison to reference emission inventories. WB aerosol showed strong seasonal variation with high concentrations during winter (0.65 mu gm(-3), 56% of total carbon) and low concentrations during summer (0.07 mu gm(-3), 6% of total carbon). FF aerosol showed less seasonal dependence; however, black carbon (BC) FF showed clear diurnal patterns corresponding to traffic rush hour peaks. The presumed non-light-absorbing biogenic carbonaceous aerosol concentration was high during summer (1.04 mu gm(-3), 72% of total carbon) and low during winter (0.13 mu gm(-3), 8% of total carbon). Aethalometer model results were further compared to radiocarbon and levoglucosan source apportionment results. The comparison showed good agreement for apportioned mass of WB and biogenic carbonaceous aerosol, but discrepancies were found for FF aerosol mass. The Aethalometer model overestimated FF aerosol mass by a factor of 1.3 compared to radiocarbon and levoglucosan source apportionment. A performed sensitivity analysis suggests that this discrepancy can be explained by interference of non-light-absorbing biogenic carbon during winter. In summary, the Aethalometer model offers a costeffective yet robust high-time-resolution source apportionment at rural background stations compared to a radiocarbon and levoglucosan alternative.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  • Massling, A., et al. (author)
  • Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
  • 2011
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:3, s. 485-497
  • Journal article (peer-reviewed)abstract
    • The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Nordin, Erik, et al. (author)
  • Smog Chamber Experiments of SOA Formation from Gasoline Exhaust and Light Aromatics
  • 2010
  • Conference paper (other academic/artistic)abstract
    • Experiments where gasoline exhaust was exposed to UV-radiation to examine Secondary Organic Aerosol (SOA) formation were performed in a smog chamber. The Aerosol Mass Yield (formed SOA/reacted precursor mass) was determined and compared with the yield from a pure precursor experiment in the chamber and from results reported in literature. Preliminary results show that the majority of the organic aerosol mass emitted from idling gasoline cars is secondary. Further, the SOA yields when taking only C6-C10 light aromatics into account are within a similar range to pure precursor experiments, suggesting that light aromatics are dominating precursors in gasoline exhaust SOA.
  •  
48.
  •  
49.
  •  
50.
  • Pagels, Joakim, et al. (author)
  • Chemical composition and mass emission factors of candle smoke particles
  • 2009
  • In: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502. ; 40:3, s. 193-208
  • Journal article (peer-reviewed)abstract
    • The aim of this study is to investigate the physical and chemical properties of particle emissions from candle burning in indoor air. Two representative types of tapered candies were studied during steady burn, sooting burn and smouldering (upon extinction) under controlled conditions in a walk-in stainless steel chamber. Steady burn emits relatively high number emissions of ultrafine particles dominated by either phosphates or alkali nitrates. The likely source of these particles is flame retardant additives to the wick. Sooting burn in addition emits larger particles mainly consisting of agglomerated elemental carbon. This burning mode is associated with the highest mass emission factors. Particles emitted during smouldering upon extinction are dominated by organic matter. A mass closure was illustrated for the total mass concentration, the summed mass concentration from chemical analysis and the size-integrated mass concentration assessed from number distribution measurements using empirically determined effective densities for the three particle types. (C) 2008 Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 318
Type of publication
journal article (144)
conference paper (141)
reports (17)
research review (8)
book chapter (5)
doctoral thesis (2)
show more...
other publication (1)
show less...
Type of content
peer-reviewed (258)
other academic/artistic (50)
pop. science, debate, etc. (10)
Author/Editor
Swietlicki, Erik (316)
Pagels, Joakim (131)
Löndahl, Jakob (81)
Bohgard, Mats (78)
Rissler, Jenny (74)
Eriksson, Axel (54)
show more...
Gudmundsson, Anders (54)
Svenningsson, Birgit ... (51)
Nordin, Erik (42)
Kristensson, Adam (39)
Wierzbicka, Aneta (38)
Dahl, Andreas (35)
Boman, Christoffer (35)
Massling, Andreas (34)
Roldin, Pontus (31)
Strand, Michael (27)
Sanati, Mehri (27)
Nilsson, Patrik (24)
Kulmala, M (23)
Gustafsson, Mats (22)
Kulmala, Markku (22)
Blomberg, Anders (21)
Blomqvist, Göran (21)
Sandström, Thomas (20)
Fors, Erik (19)
Frank, Göran (18)
Loft, Steffen (18)
Wiedensohler, A. (17)
Hansson, Hans-Christ ... (17)
Martinsson, Johan (17)
Wittbom, Cerina (17)
Wiedensohler, Alfred (15)
Ahlberg, Erik (14)
Tunved, Peter (14)
Nyström, Robin (14)
Stenström, Kristina (13)
Sporre, Moa (12)
Krejci, Radovan (10)
Laj, P. (10)
Genberg, Johan (10)
Sjögren, Staffan (10)
Johansson, Christer (9)
Artaxo, P. (9)
Baltensperger, U. (9)
Ketzel, Matthias (9)
Riipinen, Ilona (8)
Hallquist, Mattias (8)
Martinsson, Bengt G. (8)
Weingartner, E. (8)
Kivekäs, Niku (8)
show less...
University
Lund University (299)
Stockholm University (41)
VTI - The Swedish National Road and Transport Research Institute (11)
Umeå University (9)
University of Gothenburg (6)
Linnaeus University (5)
show more...
Linköping University (4)
Chalmers University of Technology (4)
Luleå University of Technology (3)
RISE (2)
Uppsala University (1)
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (300)
Swedish (15)
Undefined language (3)
Research subject (UKÄ/SCB)
Natural sciences (253)
Engineering and Technology (144)
Medical and Health Sciences (14)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view