SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Szymczak Silke) "

Search: WFRF:(Szymczak Silke)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gemoll, Timo, et al. (author)
  • Chromosomal aneuploidy affects the global proteome equilibrium of colorectal cancer cells
  • 2013
  • In: Analytical Cellular Pathology. - 2210-7177 .- 2210-7185. ; 36:5-6, s. 149-161
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Chromosomal aneuploidy has been identified as a prognostic factor in the majority of sporadic carcinomas. However, it is not known how chromosomal aneuploidy affects chromosome-specific protein expression in particular, and the cellular proteome equilibrium in general. OBJECTIVE: The aim was to detect chromosomal aneuploidy-associated expression changes in cell clones carrying trisomies found in colorectal cancer. METHODS: We used microcell-mediated chromosomal transfer to generate three artificial trisomic cell clones of the karyotypically stable, diploid, yet mismatch-deficient, colorectal cancer cell line DLD1 - each of them harboring one extra copy of either chromosome 3, 7 or 13. Protein expression differences were assessed by two-dimensional gel electrophoresis and mass spectrometry, compared to whole-genome gene expression data, and evaluated by PANTHER classification system and Ingenuity Pathway Analysis (IPA). RESULTS: In total, 79 differentially expressed proteins were identified between the trisomic clones and the parental cell line. Up-regulation of PCNA and HMGB I as well as down-regulation of IDH3A and PSMB3 were revealed as trisomy-associated alterations involved in regulating genome stability. CONCLUSIONS: These results show that trisomies affect the expression of genes and proteins that are not necessarily located on the trisomic chromosome, but reflect a pathway-related alteration of the cellular equilibrium.
  •  
2.
  • Gemoll, Timo, et al. (author)
  • HDAC2 and TXNL1 distinguish aneuploid from diploid colorectal cancers
  • 2011
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 68:19, s. 3261-3274
  • Journal article (peer-reviewed)abstract
    • DNA aneuploidy has been identified as a prognostic factor for epithelial malignancies. Further understanding of the translation of DNA aneuploidy into protein expression will help to define novel biomarkers to improve therapies and prognosis. DNA ploidy was assessed by image cytometry. Comparison of gel-electrophoresis-based protein expression patterns of three diploid and four aneuploid colorectal cancer cell lines detected 64 ploidy-associated proteins. Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in two overlapping high-ranked networks maintaining Cellular Assembly and Organization, Cell Cycle, and Cellular Growth and Proliferation. CAPZA1, TXNL1, and HDAC2 were significantly validated by Western blotting in cell lines and the latter two showed expression differences also in clinical samples using a tissue microarray of normal mucosa (n=19), diploid (n=31), and aneuploid (n=47) carcinomas. The results suggest that distinct protein expression patterns, affecting TXNL1 and HDAC2, distinguish aneuploid with poor prognosis from diploid colorectal cancers.
  •  
3.
  • Gemoll, Timo, et al. (author)
  • Protein profiling of genomic instability in endometrial cancer
  • 2012
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 69:2, s. 325-333
  • Journal article (peer-reviewed)abstract
    • DNA aneuploidy has been identified as a prognostic factor in the majority of epithelial malignancies. We aimed at identifying ploidy-associated protein expression in endometrial cancer of different prognostic subgroups. Comparison of gel electrophoresis-based protein expression patterns between normal endometrium (n = 5), diploid (n = 7), and aneuploid (n = 7) endometrial carcinoma detected 121 ploidy-associated protein forms, 42 differentially expressed between normal endometrium and diploid endometrioid carcinomas, 37 between diploid and aneuploid endometrioid carcinomas, and 41 between diploid endometrioid and aneuploid uterine papillary serous cancer. Proteins were identified by mass spectrometry and evaluated by Ingenuity Pathway Analysis. Targets were confirmed by liquid chromatography/mass spectrometry. Mass spectrometry identified 41 distinct polypeptides and pathway analysis resulted in high-ranked networks with vimentin and Nf-kappa B as central nodes. These results identify ploidy-associated protein expression differences that overrule histopathology-associated expression differences and emphasize particular protein networks in genomic stability of endometrial cancer.
  •  
4.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
5.
  • Gorski, Mathias, et al. (author)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Journal article (peer-reviewed)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
6.
  • Kato, Norihiro, et al. (author)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Journal article (peer-reviewed)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
7.
  • Wild, Philipp S., et al. (author)
  • A Genome-Wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease
  • 2011
  • In: Circulation: Cardiovascular Genetics. - : American Heart Association/Lippincott, Williams & Wilkins. - 1942-325X .- 1942-3268. ; 4:4, s. 203-403
  • Journal article (peer-reviewed)abstract
    • Background-eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). Methods and Results-In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7 x 10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3 x 10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4 x 10(-3)). Conclusions-The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD. (Circ Cardiovasc Genet. 2011;4:403-412.)
  •  
8.
  • Wuttke, Matthias, et al. (author)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view