SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Takasuo E.) "

Search: WFRF:(Takasuo E.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chikhi, N., et al. (author)
  • Evaluation of an effective diameter to study quenching and dry-out of complex debris bed
  • 2014
  • In: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 74, s. 24-41
  • Journal article (peer-reviewed)abstract
    • Many of the current research works performed in the SARNET-2 WP5 deal with the study of the coolability of debris beds in case of severe nuclear power plant accidents. One of the difficulties for modeling and transposition of experimental results to the real scale and geometry of a debris bed in a reactor is the difficulty to perform experiments with debris beds that are representative for reactor situations. Therefore, many experimental programs have been performed using beds made of multi-diameter spheres or non-spherical particles to study the physical phenomena involved in debris bed coolability and to evaluate an effective diameter. This paper first establishes the ranges of porosity and particle size distribution that might be expected for in-core debris beds and ex-vessel debris beds. Then, the results of pressure drop and dry-out heat flux (DHF) measurements obtained in various experimental setups, POMECO, DEBRIS, COOLOCE/STYX and CALIDE/PRELUDE, are presented. The issues of particle size distribution and non-sphericity are also investigated. It is shown that the experimental data obtained in "simple" debris beds are relevant to describe the behavior of more complex beds. Indeed, for several configurations, it is possible to define an "effective" diameter suitable for evaluating (with the porosity) some model parameters as well as correlations for the pressure drop across the bed, the steam flow rate during quenching and the DHF.
  •  
2.
  • Pohlner, G., et al. (author)
  • Analyses on ex-vessel debris formation and coolability in SARNET frame
  • 2014
  • In: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 74, s. 50-57
  • Journal article (peer-reviewed)abstract
    • The major aim of work in the SARNET2 European project on ex-vessel debris formation and coolability was to get an overall perspective on coolability of melt released from a failed reactor pressure vessel and falling into a water-filled cavity. Especially, accident management concepts for BWRs, dealing with deep water pools below the reactor vessel, are addressed, but also shallower pools in existing PWRs, with questions about partial cooling and time delay of molten corium concrete interaction. The subject can be divided into three main topics: (i) Debris bed formation by breakup of melt, (ii) Coolability of debris and (iii) Coupled treatment of the processes. Accompanied by joint collaborations of the partners, the performed work comprises theoretical, experimental and modelling activities. Theoretical work was done by KTH on the melt outflow conditions from a RPV and on the quantification of the probability of yielding a non-coolable ex-vessel bed by use of probabilistic assessment. IKE introduced a theoretical concept to improve debris bed coolability. A large amount of experimental work was done by partners (KTH, VTT, IKE) on the coolability of debris beds using different bed geometries, particles, heating methods and water feeds, yielding a valuable base for code validation. Modelling work was mainly done by IKE, IRSN, RSE and VTT concerning jet breakup and/or debris bed formation and cooling in 2D and 3D geometries. A benchmark for the DEFOR-A experiment of KTH was performed. Important progress was reached for several tasks and aspects and important insights are given, enabling to focus the view on possible key aspects of future activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Ma, Weimin (2)
Takasuo, E. (2)
Kudinov, Pavel (1)
Buck, M. (1)
Pohlner, G. (1)
Kulenovic, R. (1)
show more...
Chikhi, N. (1)
Coindreau, O. (1)
Li, L. X. (1)
Taivassalo, V. (1)
Leininger, S. (1)
Laurien, E. (1)
Meignen, R. (1)
Polidoro, F. (1)
show less...
University
Royal Institute of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Engineering and Technology (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view