SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tehrani Payman 1977 ) "

Search: WFRF:(Tehrani Payman 1977 )

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tehrani, Payman, 1977-, et al. (author)
  • Evaluation of active materials designed for use in printable electrochromic polymer displays
  • 2006
  • In: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 515:4, s. 2485-2492
  • Journal article (peer-reviewed)abstract
    • In a step towards roll-to-roll production of polymer-based electrochromic displays on flexible substrates, nine thiophene-based polymers and copolymers designed to increase the contrast of displays based on poly(3,4-ethylenedioxythiophene)/poly(styrene-sulfonic acid) have been synthesized and evaluated with respect to their absorbance (contrast), switch speed, and ability to switch reversibly in a water-based electrolyte. The results of the evaluation, including cyclic voltammetry and optically visible absorption, provide a basis for understanding what an aqueous electrolyte electrochromic display requires in terms of oxidation potential and material stability, and the effect of chemical structure on the reversibility and speed of switching. © 2006 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  • Tehrani, Payman, 1977- (author)
  • Electrochemical Switching in Conducting Polymers – Printing Paper Electronics
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • During the last 30 years a new research and technology field of organic electronic materials has grown thanks to a groundbreaking discovery made during the late 70’s. This new field is today a worldwide research effort focusing on exploring a new class of materials that also enable many new areas of electronics applications. The reason behind the success of organic electronics is the flexibility to develop materials with new functionalities via clever chemical design and the possibility to use low‐cost production techniques to manufacture devices.This thesis reports different aspects of electrochemical applications of organic electronics. We have shown that the color contrast in reflective and transmissive electrochromic displays can be almost doubled by adding an extra electrochromic polymer. The choice of electrochromic material was found to be limited by its electrochemical over‐oxidation (ECO) properties, which is one of the main degradation mechanisms found in displays. The irreversible and non‐conducting nature of over‐oxidized films encouraged us to use it in a novel patterning process in which polythiophene films can be patterned through local and controlled deactivation of the conductivity. ECO can be combined with various patterning tools such as screen printing for low‐cost roll‐to‐roll manufacturing or photolithography, which enables patterning of small features. Studies have shown that electronic conductivity contrasts beyond 107 can be achieved, which is enough for various simple electronic systems. To generate better understanding of the ECO phenomenon, the effect of pH on the over‐oxidation characteristics was studied. The results suggest that a part of the mechanism for over‐oxidation depends on the OH– concentration of the electrolyte used. Over‐oxidation has also been used in electrochemical loggers, where the temperature and time dependence of the propagation of an over‐oxidation front is used to monitor and record the temperature of a package.
  •  
5.
  • Tehrani, Payman, 1977- (author)
  • Electrochromism and over-oxidation in conjugated polymers: Improved color switching and a novel patterning approach
  • 2006
  • Licentiate thesis (other academic/artistic)abstract
    • During the last 30 years a new research and technology field of organic electronic materials has grown thanks to a groundbreaking discovery made during the late 70’s. This new field is today a worldwide research effort focusing on exploring this new class of materials that also enable many new areas of electronics applications. In the organic electronics research field conducting organic molecules and polymers are synthesized and used in devices. The reason behind the success of conducting polymers is the flexibility to develop materials with new functionalities via clever chemical design and the possibility to use low-cost production techniques to manufacture devices.This thesis reviews and describes different aspects of the organic electronics, here focusing on electrochromic displays; device improvements, the study of degradation and also patterning technology for rational manufacturing processing. The color contrast in electrochromic displays based on conjugated polymers was increased with approximately a factor of two by adding an extra electrochromic polymer. It was found that electrochemical over-oxidation (ECO) limits the flexibility in choosing desired electrochromic materials. ECO is one of the main degradation mechanisms in electrochromic displays. ECO is an efficient and fast process to permanently reduce the electronic conductivity in polythiophenes. From this, a novel patterning process was developed, in which the films of polythiophenes can be patterned through local and controlled deactivation of the conductivity. The ECO has been combined with different patterning tools to enable the use of existing printing tools for manufacturing. In combination with screen-printing, low-cost and high volume roll-to-roll patterning was demonstrated, while together with photolithography, patterning down to 2 µm can be achieved. Systematic studies have shown that conductivity contrasts beyond 107 can be achieved, which is enough for various simple electronic systems. To generate better understanding of the ECO phenomena the effect of pH on the over-oxidation characteristics was studied. The results suggest that a part of the mechanism for over-oxidation depends on the OH– concentration of the electrolyte used.
  •  
6.
  • Tehrani, Payman, 1977-, et al. (author)
  • Patterning polythiophene films using electrochemical over-oxidation
  • 2005
  • In: Smart materials and structures. - : IOP Elctronic Journals. - 0964-1726 .- 1361-665X. ; 14, s. N21-N25
  • Journal article (peer-reviewed)abstract
    • Over-oxidative degradation of polythiophenes, which breaks the conjugation and destroys the electronic conductivity of the polymer, is well documented as a liability in these materials. We use this 'weakness', via controlled electrochemical over-oxidation, in a novel subtractive patterning technique compatible with high-speed reel-to-reel printing technology. We demonstrate the use of electrochemical over-oxidation to pattern PEDOT:PSS films via an x–y plotter, silk-screen and high-resolution photolithographic techniques, resulting in patterning down to a resolution of 2 µm and a conduction contrast between unpatterned and patterned areas of up to 108.
  •  
7.
  • Tehrani, Payman, 1977-, et al. (author)
  • Printable organic temperature logger based on overoxidation front propagation in PEDOT:PSS
  • Other publication (other academic/artistic)abstract
    • An electrochemical temperature logger has been realized by using the propagation of overoxidation fronts in stripes of poly(3,4-ethylenedioxythiopehene) blended with poly(styrenesulfonate) (PEDOT:PSS). The over-oxidation front propagation has been characterized and related to the ionic conductivity of polyethylene glycol (PEG) electrolytes. The electrolytes were chosen to have a phase transition in the temperature interval to be monitored, resulting in large conductivity variations and thereby an easily interpreted output. A logger demonstrator has been fabricated and shown to detect a temperature increase and a following temperature decrease. This very simple device is cheap to produce and could be used to monitor the temperature of packages.
  •  
8.
  • Tehrani, Payman, 1977-, et al. (author)
  • The effect of pH on the elechtrochemical over-oxidation of PEDOT:PSS films
  • 2007
  • In: Solid State Ionics. - : ScienceDirect. - 0167-2738 .- 1872-7689. ; 177:39-40, s. 3521-3527
  • Journal article (peer-reviewed)abstract
    • Chemical degradation of conjugated polymers is one cause of material failures in polymer-based (opto)electronic devices, but can also be used as a technique for subtractive patterning of polymer films. When a large anodic potential is applied to the conducting polymer blend poly(3,4-ethylenedioxythiophene)-poly(4styrenesulfonate), PEDOT:PSS, an over-oxidation reaction occurs, altering its electrical conductivity. Here, we have studied the effect of pH on the electrochemical over-oxidation process of PEDOT in PEDOT:PSS. High pH is associated with a decrease of over-oxidation potential and an increase of resistivity in the resulting film. Vibrational spectroscopy and photoelectron spectroscopy measurements on over-oxidized PEDOT:PSS films indicate that the decrease in conductivity results from cleavage of the conjugation pathway accompanied by the formation of sulfone, carbonyl and carboxylic groups in the polymer chain.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view