SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Terwel J.) "

Search: WFRF:(Terwel J.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Deckers, M., et al. (author)
  • Photometric study of the late-time near-infrared plateau in Type Ia supernovae 
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:3, s. 4414-4430
  • Journal article (peer-reviewed)abstract
    • We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe II] to [Fe III] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia. 
  •  
2.
  • Prentice, S. J., et al. (author)
  • Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:3, s. 4342-4358
  • Journal article (peer-reviewed)abstract
    • The division between stripped-envelope supernovae (SE-SNe) and superluminous supernovae (SLSNe) is not well-defined in either photometric or spectroscopic space. While a sharp luminosity threshold has been suggested, there remains an increasing number of transitional objects that reach this threshold without the spectroscopic signatures common to SLSNe. In this work, we present data and analysis on four SNe transitional between SE-SNe and SLSNe; the He-poor SNe 2019dwa and 2019cri, and the He-rich SNe 2019hge and 2019unb. Each object displays long-lived and variable photometric evolution with luminosities around the SLSN threshold of Mr < −19.8 mag. Spectroscopically however, these objects are similar to SE-SNe, with line velocities lower than either SE-SNe and SLSNe, and thus represent an interesting case of rare transitional events.
  •  
3.
  • Liu, Chang, et al. (author)
  • SN 2022joj : A Peculiar Type Ia Supernova Possibly Driven by an Asymmetric Helium-shell Double Detonation
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 958:2
  • Journal article (peer-reviewed)abstract
    • We present observations of SN 2022joj, a peculiar Type Ia supernova discovered by the Zwicky Transient Facility. SN 2022joj exhibits an unusually red g ZTF - r ZTF color at early times and a rapid blueward evolution afterward. Around maximum brightness, SN 2022joj shows a high luminosity ( MgZTF,max similar or equal to-19.7 mag), a blue broadband color (g ZTF - r ZTF similar or equal to -0.2 mag), and shallow Si ii absorption lines, consistent with those of overluminous, SN 1991T-like events. The maximum-light spectrum also shows prominent absorption around 4200 angstrom, which resembles the Ti ii features in subluminous, SN 1991bg-like events. Despite the blue optical-band colors, SN 2022joj exhibits extremely red ultraviolet minus optical colors at maximum luminosity (u - v similar or equal to 0.6 mag and uvw1 - v similar or equal to 2.5 mag), suggesting a suppression of flux at similar to 2500-4000 angstrom. Strong C ii lines are also detected at peak. We show that these unusual spectroscopic properties are broadly consistent with the helium-shell double detonation of a sub-Chandrasekhar mass (M similar or equal to 1 M circle dot) carbon/oxygen white dwarf from a relatively massive helium shell (M s similar or equal to 0.04-0.1 M circle dot), if observed along a line of sight roughly opposite to where the shell initially detonates. None of the existing models could quantitatively explain all the peculiarities observed in SN 2022joj. The low flux ratio of [Ni ii] lambda 7378 to [Fe ii] lambda 7155 emission in the late-time nebular spectra indicates a low yield of stable Ni isotopes, favoring a sub-Chandrasekhar mass progenitor. The significant blueshift measured in the [Fe ii] lambda 7155 line is also consistent with an asymmetric chemical distribution in the ejecta, as is predicted in double-detonation models.
  •  
4.
  • Harvey, L., et al. (author)
  • Early-time spectroscopic modelling of the transitional Type Ia Supernova 2021rhu with tardis
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 4444-4467
  • Journal article (peer-reviewed)abstract
    • An open question in SN Ia research is where the boundary lies between 'normal' Type Ia supernovae (SNe Ia) that are used in cosmological measurements and those that sit off the Phillips relation. We present the spectroscopic modelling of one such '86G-like' transitional SN Ia, SN 2021rhu, that has recently been employed as a local Hubble Constant calibrator using a tip of the red-giant branch measurement. We detail its modelling from -12 d until maximum brightness using the radiative-transfer spectral-synthesis code tardis. Please check and correct this paper accordingly. We base our modelling on literature delayed-detonation and deflagration models of Chandrasekhar mass white dwarfs, as well as the double-detonation models of sub-Chandrasekhar mass white dwarfs. We present a new method for 'projecting' abundance profiles to different density profiles for ease of computation. Due to the small velocity extent and low outer densities of the W7 profile, we find it inadequate to reproduce the evolution of SN 2021rhu as it fails to match the high-velocity calcium components. The host extinction of SN 2021rhu is uncertain but we use modelling with and without an extinction correction to set lower and upper limits on the abundances of individual species. Comparing these limits to literature models we conclude that the spectral evolution of SN 2021rhu is also incompatible with double-detonation scenarios, lying more in line with those resulting from the delayed-detonation mechanism (although there are some discrepancies, in particular a larger titanium abundance in SN 2021rhu compared to the literature). This suggests that SN 2021rhu is likely a lower luminosity, and hence lower temperature, version of a normal SN Ia.
  •  
5.
  • Sharma, Yashvi, et al. (author)
  • A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:1
  • Journal article (peer-reviewed)abstract
    • Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between -19.1 and -21, spectra having weak H ss and large Balmer ldecrements of similar to 7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3 sigma detections, with some SNe showing a reduction in the red wing of Ha, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of He I.5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29+(27)(21) Gpc(-3) yr(-1) for SNe Ia-CSM, which is similar to 0.02%-0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%-0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.
  •  
6.
  • Wevers, T., et al. (author)
  • An elliptical accretion disk following the tidal disruption event AT 2020zso
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Aims. The modelling of spectroscopic observations of tidal disruption events (TDEs) to date suggests that the newly formed accretion disks are mostly quasi-circular. In this work we study the transient event AT 2020zso, hosted by an active galactic nucleus (AGN; as inferred from narrow emission line diagnostics), with the aim of characterising the properties of its newly formed accretion flow.Methods. We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations and spectral line content and evolution. We identify transient, double-peaked Bowen (N III), He I, He II, and Hα emission lines. We model medium-resolution optical spectroscopy of the He II (after careful de-blending of the N III contribution) and Hα lines during the rise, peak, and early decline of the light curve using relativistic, elliptical accretion disk models.Results. We find that the spectral evolution before the peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around the peak, the envelope reaches its maximum extent (approximately 1015 cm, or ∼3000–6000 gravitational radii for an inferred black hole mass of 5−10 × 105 M⊙) and becomes optically thin. The Hα and He II emission lines at and after the peak can be reproduced with a highly inclined (i = 85 ± 5 degrees), highly elliptical (e = 0.97 ± 0.01), and relatively compact (Rin = several 100 Rg and Rout = several 1000 Rg) accretion disk.Conclusions. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs, where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary supermassive black hole hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination). We constrain the disk alignment timescale to > 15 days in AT2020zso, which rules out high black hole spin values (a < 0.8) for MBH ∼ 106 M⊙ and disk viscosity α ≳ 0.1.
  •  
7.
  • Aamer, Aysha, et al. (author)
  • A precursor plateau and pre-maximum [O ii] emission in the superluminous SN2019szu : a pulsational pair-instability candidate
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:4, s. 11970-11995
  • Journal article (peer-reviewed)abstract
    • We present a detailed study on SN2019szu, a Type I superluminous supernova at z = 0.213 that displayed unique photometric and spectroscopic properties. Pan-STARRS and ZTF forced photometry show a pre-explosion plateau lasting ∼40 d. Unlike other SLSNe that show decreasing photospheric temperatures with time, the optical colours show an apparent temperature increase from ∼15 000 to ∼20 000 K over the first 70 d, likely caused by an additional pseudo-continuum in the spectrum. Remarkably, the spectrum displays a forbidden emission line (likely attributed to λλ7320,7330) visible 16 d before maximum light, inconsistent with an apparently compact photosphere. This identification is further strengthened by the appearances of [O III] λλ4959, 5007, and [O III] λ4363 seen in the spectrum. Comparing with nebular spectral models, we find that the oxygen line fluxes and ratios can be reproduced with ∼0.25 M⊙ of oxygen-rich material with a density of ∼10−15 g cm−3⁠. The low density suggests a circumstellar origin, but the early onset of the emission lines requires that this material was ejected within the final months before the terminal explosion, consistent with the timing of the precursor plateau. Interaction with denser material closer to the explosion likely produced the pseudo-continuum bluewards of ∼5500 Å. We suggest that this event is one of the best candidates to date for a pulsational pair-instability ejection, with early pulses providing the low density material needed for the formation of the forbidden emission line, and collisions between the final shells of ejected material producing the pre-explosion plateau.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view