SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Theodorou Vassilia) "

Search: WFRF:(Theodorou Vassilia)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Da Silva, Stéphanie, et al. (author)
  • A novel topical PPARγ agonist induces PPARγ-activity in ulcerative colitis mucosa and prevents and reverses inflammation in induced-colitis models
  • 2018
  • In: Inflammatory Bowel Diseases. - : Lippincott Williams & Wilkins. - 1078-0998 .- 1536-4844. ; 24:4, s. 792-805
  • Journal article (peer-reviewed)abstract
    • Background: Peroxisome proliferator-activated receptor-gamma (PPARγ) exerts anti-inflammatory effects and is therefore a potential target in ulcerative colitis (UC). A novel PPARγ agonist (AS002) developed for local action was evaluated ex vivo in biopsies from UC patients and in vivo in mice with low-grade dextran sodium sulfate (DSS)- and trinitrobenzene sulfonic acid (TNBS)-induced colitis.Methods: Colonic biopsies from UC patients (n = 18) and healthy controls (n = 6) were incubated with AS002 or rosiglitazone (positive control) to measure mRNA expression of the PPARγ-responsive gene ADIPOPHILIN and protein levels of UC-related cytokines (enzyme-linked immunosorbent assay). AS002 absorption was determined in the colonic mucosa of UC patients. DSS-colitis mice received PPARγ agonists or vehicle daily by intrarectal administration starting 2 days before induction of colitis (preventive) or from days 3 to 8 (curative). Myeloperoxidase (MPO) and cytokine levels in colonic mucosa were determined. In addition, AS002 effects were studied in TNBS colitis.Results: AS002 displayed an absorption pattern of a lipophilic drug totally metabolized in the mucosa. AS002 and rosiglitazone increased ADIPOPHILIN mRNA expression (3-fold) and decreased TNF-α, IL-1β, and IL-13 levels in human UC biopsies. In DSS, in both preventive and curative treatment and in TNBS colitis, AS002 protected against macroscopic and histological damage and lowered MPO and TNF-α, IL-1β, and IL-13 levels.Conclusions: AS002 triggers anti-inflammatory PPARγ activity in the human colonic mucosa of UC patients and prevents and reverses colitis in mice. Our data suggest that AS002 has potential for topical maintenance treatment of UC, which warrants further studies in vivo in patients.
  •  
2.
  • Rincel, Marion, et al. (author)
  • Maternal high-fat diet and early-life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats.
  • 2018
  • In: Brain Structure and Function. - : Springer. - 1863-2653 .- 1863-2661. ; 223:2, s. 883-895
  • Journal article (peer-reviewed)abstract
    • The medial prefrontal cortex (mPFC) is a key area for the regulation of numerous brain functions including stress response and cognitive processes. This brain area is also particularly affected by adversity during early life. Using an animal model in rats, we recently demonstrated that maternal exposure to a high-fat diet (HFD) prevents maternal separation (MS)-induced gene expression alterations in the developing PFC and attenuates several long-term deleterious behavioral effects of MS. In the present study, we ask whether maternal HFD could protect mPFC neurons of pups exposed to early life stress by examining dendritic morphology and spine density in juvenile [postnatal day (PND) 21] and adult rats submitted to MS. Dams were fed either a control or an HFD throughout gestation and lactation, and pups were submitted to MS from PND2 to PND14. We report that maternal HFD prevents MS-induced spine loss at PND21 and dendritic atrophy at adulthood. Furthermore, we show in adult MS rats that PFC-dependent memory extinction deficits are prevented by maternal HFD. Finally, perinatal HFD exposure reverses gut leakiness following stress in pups and seems to exert an anti-stress effect in dams. Overall, our work demonstrates that maternal HFD affects the developing brain and suggests that nutrition, possibly through gut–brain interactions, could modulate mPFC sensitivity to early stress.
  •  
3.
  • Wells, Jerry M., et al. (author)
  • Homeostasis of the Gut Barrier and Potential Biomarkers
  • 2017
  • In: American Journal of Physiology - Gastrointestinal and Liver Physiology. - Bethesda, USA : American Physiological Society. - 0193-1857 .- 1522-1547. ; 312:3, s. G171-G193
  • Journal article (peer-reviewed)abstract
    • The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of sIgA and antimicrobial peptides and proteins. With exception of sIgA the expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of gastrointestinal disorders. Additionally, the gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the HPA-axis and both mast cell-dependent as well as mast cell- independent mechanisms. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in patients but there remains a need to explore their use in assessing impact of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of the available biomarkers and their predictive value for gut health in human cohorts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view