SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tian Liyun) "

Search: WFRF:(Tian Liyun)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tian, Liyun, et al. (author)
  • A first principles study of the stacking fault energies for fcc Co-based binary alloys
  • 2017
  • In: Acta Materialia. - : Acta Materialia Inc. - 1359-6454 .- 1873-2453. ; 136, s. 215-223
  • Journal article (peer-reviewed)abstract
    • The stacking fault energy is closely related to structural phase transformations and can help to understand plastic deformation mechanisms in materials. Here we perform first principles calculations of the stacking fault energy in the face centered cubic (fcc) Cobalt-based binary alloys Co1−x Mx, where M = Cr, Fe, Ni, Mo, Ru, Rh, Pd and W. We investigate the concentration range between 0 and 30 at.% of the alloying element. The results are discussed in connection to the phase transition between the low-temperature hexagonal close packed (hcp) and the fcc structures observed in Co and its alloys. By analyzing the stacking fault energies, we show that alloying Co with Cr, Ru, and Rh promotes the hcp phase formation while Fe, Ni and Pd favor the fcc phase instead. The effect of Mo and W on the phase transition differs from the other elements, that is, for concentrations below 10% the intrinsic stacking fault energy is lower than that for pure fcc Co and the energy barrier is higher, whereas above 10% the situation reverses. We carry out also thermodynamic calculations using the ThermoCalc software. The trends of the ab initio stacking fault energy are found to agree well with those of the molar Gibbs energy differences and the phase transition temperature in the binary phase diagrams and give a solid support for the phase stability of these alloys.
  •  
2.
  • Tian, Liyun, et al. (author)
  • Temperature effects on the elastic and thermodynamic properties of Al1-xLix and Al1-xCrx alloys from first principles
  • 2021
  • In: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 5:6
  • Journal article (peer-reviewed)abstract
    • Thermal effects on the elastic and thermodynamic properties of face-centered cubic (fcc) Al-Li and Al-Cr alloys are investigated here by means of density-functional theory. We calculate the polycrystalline Young's modulus, Poisson's ratio, bulk modulus and shear modulus as a function of alloying concentration and temperature. The calculated elastic and thermodynamic properties are in good agreement with available experimental data. Increasing temperature lowers the values of the moduli of both alloys. The results show that both alloying elements increase the Young's modulus. In the case of Al-Li alloys, below 8 at.% Li the Young's modulus increases due to solid solution formation. Further improvement of the stiffness at higher concentrations is due to formation of precipitates. Cr increases almost linearly the Young's modulus, which at 10 at.% Cr becomes almost 34% higher than that of pure Al. The formation of precipitates do not affect the value of the elastic moduli at low Cr concentrations. We estimate the solid solution hardening effect in these alloys by combining the Labusch-Nabarro theory with density-functional theory data.
  •  
3.
  • Tian, Li-Yun, et al. (author)
  • Alloying effect on the order-disorder transformation in tetragonal FeNi
  • 2021
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Tetragonal ([Formula: see text]) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order-disorder transition temperature ([Formula: see text] K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order-disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.
  •  
4.
  • Tian, Li-Yun, et al. (author)
  • Pressure effect on the order-disorder transformation in L1 0 FeNi
  • 2020
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The ordered phase of the FeNi system is known for its promising magnetic properties that make it a first-class rare-earth free permanent magnet. Mapping out the parameter space controlling the order-disorder transformation is an important step towards finding growth conditions that stabilize the [Formula: see text] phase of FeNi. In this work, we study the magnetic properties and chemical order-disorder transformation in FeNi as a function of lattice expansion by utilizing ab initio alloy theory. The largest volume expansion considered here is 29% which corresponds to a pressure of [Formula: see text] GPa. The thermodynamic and magnetic calculations are formulated in terms of a long-range order parameter, which is subsequently used to find the ordering temperature as a function of pressure. We show that negative pressure promotes ordering, meaning that synthetic routes involving an increase of the volume of FeNi are expected to expand the stability field of the [Formula: see text] phase.
  •  
5.
  • Lamelas, Victor, et al. (author)
  • Modeling of the intrinsic softening of γ-carbides in cemented carbides
  • 2023
  • In: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 37
  • Journal article (peer-reviewed)abstract
    • Cemented carbides are widely used materials in industrial applications due to their remarkable combination of hardness and toughness. However, they are exposed to high temperatures during service leading to a reduction of their hardness. A common practice to damp this softening is to incorporate transition metal carbides in cemented carbide compositions, which keeps the hardness relatively higher when temperature increases. Understanding the underlying mechanisms of this softening is crucial for the development of cemented carbides with optimal properties. In this work, atomic-scale mechanisms taking place during plastic deformation are analyzed and linked to the effect that they have on the intrinsic macro-scale softening of the most common TMC used in cemented carbides grades (TiC, ZrC, HfC, VC, NbC and TaC). The proposed model uses the generalized stacking fault energy obtained from density functional theory calculations as an input to Peierls-Nabarro analytical models to obtain the critically resolved shear stress needed for deformation to occur in different slip systems. Subsequently, this information is used to predict the hardness variation across the temperature service range experienced by cemented carbides in wear applications. In addition to the prediction of hot-hardness for TMC, the obtained results also offer valuable insights into the intrinsic mechanisms governing TMCs deformation. The results facilitate the identification of dominant dislocation types influencing plasticity within distinct temperature regimes, define energetically favorable slip systems, and predict the brittle-ductile transition temperature in these materials. For instance, for group IV carbides at low temperatures, the slip system with a lower GSFE is {110}<11̅0> and around 30% of their melting temperature, the GSFE of partial slip in {111}<12̅1> becomes lower, changing the dominant slip mechanism and characterizing the Brittle-Ductile transition.
  •  
6.
  • Levamäki, Henrik, et al. (author)
  • Gradient-level and nonlocal density functional descriptions of Cu-Au intermetallic compounds
  • 2018
  • In: European Physical Journal B. - : SPRINGER. - 1434-6028 .- 1434-6036. ; 91:6
  • Journal article (peer-reviewed)abstract
    • We use three gradient level and two nonlocal density functional approximations to study the thermodynamic properties of Cu-Au compounds. It is found that a well-designed gradient level approximation (quasi non-uniform approximation, QNA) reproduces the experimental equilibrium volumes and the formation energies of L12 and L10 phases. On the other hand, QNA predicts a non-existent beta(2) phase, which can be remedied only when employing the nonlocal hybrid-level Heyd-Scuseria-Ernzerhof (HSE06) or Perdew-Burke-Ernzerhof (PBE0) approximations. Gradient-level approximations lead to similar electronic structures for the Cu-Au compounds whereas hybrids shift the d-band towards negative energies and account for the complex d-d hybridization more accurately.
  •  
7.
  • Li, Changle, 1992-, et al. (author)
  • Critical assessment of Co-Cu phase diagram from first-principles calculations
  • 2020
  • In: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 102:18
  • Journal article (peer-reviewed)abstract
    • Using first-principles alloy theory, we perform a systematic study of the Co-Cu phase diagram. Calculations are carried out for ferromagnetic and paramagnetic Co1-xCux solid solutions with face-centered-cubic (fcc) crystal structure. We find that the equilibrium volumes and magnetic states are crucial for a quantitative description of the thermodynamics of the Co-Cu system at temperatures up to 1400 K. In particular, the paramagnetic state of Cu-rich alloys with persisting local magnetic moments is shown to be responsible for the solubility of a small amount of Co in fcc Cu whereas the excess entropy in the ferromagnetic Co-rich region critically depends on the adopted lattice parameters. None of the common local or semilocal density functional theory approximations have the necessary accuracy for the lattice parameters when compared to the experimental data. The predicted ab initio Co-Cu phase diagram is in good agreement with the measurements and CALPHAD data, making it possible to gain a deep insight into the various contributions to the Gibbs free energy. The present study provides an atomic-level description of the thermodynamic quantities controlling the limited mutual solubility of Co and Cu and highlights the importance of high-temperature magnetism.
  •  
8.
  • Tian, Liyun, 1986- (author)
  • Density Functional Study of Elastic Properties of Metallic Alloys
  • 2015
  • Licentiate thesis (other academic/artistic)abstract
    • Special quasi-random structure (SQS) and coherent potential approximation (CPA) are techniques widely employed in the first-principles calculations of random alloys. The aim of the thesis is to study these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. We compare the elastic parameters obtained from SQS and CPA calculations. For the CPA and SQS calculations, we employ the Exact Muffin-Tin Orbitals (EMTO) method and the pseudopotential method as implemented in the Vienna Ab initio Simulation Package (VASP), respectively. We compare the predicted trends of the VASP-SQS and EMTO-CPA parameters against composition.As a first case study, we investigate the elastic parameters of face centered cubic (fcc) Ti1−xAlx(0≤x≤100at.%) random solid solutions as a function of Al content (x). The EMTO-CPA and VASP-SQS results are in good agreement with each other. Comparing the lattice constants from SQS calculations with and without local lattice relaxations, we find that in Ti-rich (Al-rich) side the lattice constants remain almost unchanged (slightly increase) upon atomic relaxations. Taking local lattice distortions into consideration decreases the C11 and C44 elastic parameters, but their trends are not significantly affected. The C12 elastic constant, on the other hand, is almost unchanged when atomic relaxations are included. In general, the uncertainties in the elastic parameters associated with the symmetry lowering in supercell studies turn out to be superior to the differences between the two alloy techniques including the effect of LLD.We also investigate the elastic properties of random fcc Cu1−xAux(0≤x≤100 at.%) alloys as a function of Au content employing the CPA and SQS approaches. It is found that the CPA and SQS values forC11andC12 are consistent with each other no matter whether the atomic relaxations are taken into account or not. On the other hand, the EMTO-CPA values for C44 are slightly larger than those from SQS calculations especially for Cu-rich alloys which we ascribe to the differences in the DFT solvers rather than the differences between CPA and SQS.The Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation term in density functional theory (DFT) is a mature approach and have been adopted routinely to investigate the properties of metallic alloys. In most of the cases, PBE provides theoretical results in good agreement with experiments. However, the ordered Cu-Au system turned out to be a special case where large deviations between the PBE predictions and observations occur. In this work, we make use of a recently developed exchange-correlation functional, the so-called quasi-non-uniform exchange-correlation approximation (QNA), to calculate the lattice constants and formation energies for ordered Cu-Au alloys as a function of composition. The calculations are performed using the EMTO method. We find that the QNA functional leads to excellent agreement betweent heory and experiment. The PBE strongly overestimates the lattice constants for ordered Cu3Au, CuAu, CuAu3 compounds and also for the pure metals which is nicely corrected by the QNA approach. The errors in the formation energies of Cu3Au, CuAu, CuAu3relative to the experimental data decrease from 38-45% obtained with PBE to 5-9% calculated for QNA. 
  •  
9.
  • Tian, Liyun, et al. (author)
  • Density functional theory description of random Cu-Au alloys
  • 2019
  • In: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 99:6
  • Journal article (peer-reviewed)abstract
    • Density functional alloy theory is used to accurately describe the three core effects controlling the thermodynamics of random Cu-Au alloys. These three core effects are exchange correlation (XC), local lattice relaxations (LLRs), and short-range order (SRO). Within the real-space grid-based projector augmented-wave (GPAW) method based on density functional theory (DFT), we adopt the quasinonuniform XC approximation (QNA), and take into account the LLR and the SRO effects. Our approach allows us to study the importance of all three core effects in a unified way within one DFT code. The results demonstrate the importance of the LLR term and show that going from the classical gradient level approximations to QNA leads to accurate formation energies at various degrees of ordering. The order-disorder transition temperatures for the 25%, 50%, and 75% alloys reach quantitative agreement with the experimental values only when also the SRO effects are considered.
  •  
10.
  • Tian, Liyun (author)
  • Density Functional Theory Study of Bulk Properties of Metallic Alloys and Compounds
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • First-principles methods based on Density functional theory (DFT) are now adopted routinely to calculate the properties of materials. However, one of the biggest challenges of DFT is to describe the electronic behaviors of random alloys. One of the aims of this thesis is to study binary alloys, e.g. Ti-Al, Cu-Au, and multi-component alloys by using two models for chemically random structures: the special quasi-random structure (SQS) and coherent potential approximation (CPA).I investigate these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. Within the SQS approach, the LLD effect can be modeled in a straightforward manner by relaxing the positions of atoms in the supercell. However, within this approach, it is difficult to model the random multi-components alloys due to the large size of the supercells. On the other hand, the CPA approach uses single-site approximation and thus it is not limited by the number of alloy components. But CPA suffers from the neglect of the local lattice relaxation effect, which in some systems and for some properties could be of significant importance.In my studies, the SQS and CPA approaches are combined with the pseudopotential method as implemented in the Vienna Ab-initio Simulation Package (VASP) and the Exact Muffin-Tin Orbitals (EMTO) methods, respectively. The mixing energies or formation enthalpies and elastic parameters of fcc Ti1-xAlx and Cu1-xAux (0 =< x =< 1) random solid solutions and high-entropy multicomponent TiZrVNb, TiZrNbMo and TiZrVNbMo alloys are calculated as a function of concentration. By comparing the results with and without local lattice relaxations, we find that the LLD effect is negligible for the elastic constants C11, C12, and C44. In general, the uncertainties in the elastic parameters associated with the symmetry lowering in supercell studies turn out to be superior to the differences between the two alloy techniques including the effect of LLD. However, the LLD effect on the mixing energies or formation enthalpies is significant and depends on the degree of size mismatch between alloy constituents. In the cases of random Cu-Au and high-entropy alloys, the formation enthalpies and mixing energies are significantly decreased when the LLD effect is considered. This finding sets the limitations of CPA for the mixing energies or formation enthalpies of alloys with large atomic size differences.The other goal of the thesis is to study the effect of exchange-correlation functionals on the formation energies of ordered alloys. For this investigation, we select the Cu-Au binary system which has for many years been in the focus of DFT and beyond DFT schemes. The Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation term in DFT is a mature approach and have been adopted routinely to investigate the properties of metallic alloys. In most cases, PBE provides theoretical results in good agreement with experiments. However, the ordered Cu-Au system turned out to be a special case where large deviations between the PBE predictions and observations occur. In this work, we make use of a recently developed exchange-correlation functional, the so-called quasi-nonuniform exchange-correlation approximation (QNA), to calculate the lattice constants and formation energies for ordered Cu-Au alloys as a function of composition. The calculations are performed using the EMTO method and verified by a full-potential method. We find that the QNA functional leads to an excellent agreement between theory and experiment. The PBE strongly overestimates the lattice constants for ordered Cu3Au, CuAu, CuAu3 compounds and also for the pure metals which are nicely corrected by the QNA approach. The errors in the formation energies of Cu3Au, CuAu, CuAu3 relative to the experimental data decrease from 38-45% obtained with PBE to 5-9% calculated for QNA. This excellent result demonstrates that one can reach superior accuracy within DFT for the formation energies and there is no need to go beyond DFT. Furthermore, it shows that error cancellation can be very effective for the formation energies as well and that the main DFT errors obtained at PBE or LDA levels originate from the core-valence overlap region, which is correctly captured by QNA due to its particular construction. Our findings are now extended to disordered alloys, which is briefly discussed already in one of my published papers.
  •  
11.
  • Zhao, Liyun, et al. (author)
  • Numerical simulations of Gurenhekou glacier on the Tibetan Plateau
  • 2014
  • In: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 60:219, s. 71-82
  • Journal article (peer-reviewed)abstract
    • We investigate the impact of climate change on Gurenhekou glacier, southern Tibetan Plateau, which is representative of the tens of thousands of mountain glaciers in the region. We apply a three-dimensional, thermomechanically coupled full-Stokes model to simulate the evolution of the glacier. The steep and rugged bedrock geometry requires use of such a flow model. We parameterize the temperature and surface mass-balance (SMB) uncertainties using nearby automatic weather and meteorological stations, 6 year measured SMB data and an energy-balance model for a nearby glacier. Summer air temperature increased at 0.02 K a(-1) over the past 50 years, and the glacier has retreated at an average rate of 8.3 m a(-1). Prognostic simulations suggest an accelerated annual average retreat rate of similar to 9.1 m a(-1) along the central flowline for the next 25 years under continued steady warming. However, regional climate models suggest a marked increase in warming rate over Tibet during the 21st century, and this rate causes about a 0.9 +/- 0.3% a(-1) loss of glaciated area and 1.1 +/- 0.6% a(-1) shrinkage of glacier volume. These results, the rather high warming rates predicted and the small sizes of most Tibetan glaciers, suggest that significant numbers of glaciers will be lost in the region during the 21st century.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view