SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tinguely P) "

Search: WFRF:(Tinguely P)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
7.
  • Butola, A, et al. (author)
  • High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition
  • 2020
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 13118-
  • Journal article (peer-reviewed)abstract
    • Sperm cell motility and morphology observed under the bright field microscopy are the only criteria for selecting a particular sperm cell during Intracytoplasmic Sperm Injection (ICSI) procedure of Assisted Reproductive Technology (ART). Several factors such as oxidative stress, cryopreservation, heat, smoking and alcohol consumption, are negatively associated with the quality of sperm cell and fertilization potential due to the changing of subcellular structures and functions which are overlooked. However, bright field imaging contrast is insufficient to distinguish tiniest morphological cell features that might influence the fertilizing ability of sperm cell. We developed a partially spatially coherent digital holographic microscope (PSC-DHM) for quantitative phase imaging (QPI) in order to distinguish normal sperm cells from sperm cells under different stress conditions such as cryopreservation, exposure to hydrogen peroxide and ethanol. Phase maps of total 10,163 sperm cells (2,400 control cells, 2,750 spermatozoa after cryopreservation, 2,515 and 2,498 cells under hydrogen peroxide and ethanol respectively) are reconstructed using the data acquired from the PSC-DHM system. Total of seven feedforward deep neural networks (DNN) are employed for the classification of the phase maps for normal and stress affected sperm cells. When validated against the test dataset, the DNN provided an average sensitivity, specificity and accuracy of 85.5%, 94.7% and 85.6%, respectively. The current QPI + DNN framework is applicable for further improving ICSI procedure and the diagnostic efficiency for the classification of semen quality in regard to their fertilization potential and other biomedical applications in general.
  •  
8.
  • Creely, A. J., et al. (author)
  • Overview of the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
  •  
9.
  • Tinguely, R. A., et al. (author)
  • Isotope effects and Alfvén eigenmode stability in JET H, D, T, DT, and He plasmas
  • 2024
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 64:9
  • Journal article (peer-reviewed)abstract
    • While much about Alfv & eacute;n eigenmode (AE) stability has been explored in previous and current tokamaks, open questions remain for future burning plasma experiments, especially regarding exact stability threshold conditions and related isotope effects; the latter, of course, requiring good knowledge of the plasma ion composition. In the JET tokamak, eight in-vessel antennas actively excite stable AEs, from which their frequencies, toroidal mode numbers, and net damping rates are assessed. The effective ion mass can also be inferred using measurements of the plasma density and magnetic geometry. Thousands of AE stability measurements have been collected by the Alfv & eacute;n Eigenmode Active Diagnostic in hundreds of JET plasmas during the recent Hydrogen, Deuterium, Tritium, DT, and Helium-4 campaigns. In this novel AE stability database, spanning all four main ion species, damping is observed to decrease with increasing Hydrogenic mass, but increase for Helium, a trend consistent with radiative damping as the dominant damping mechanism. These data are important for confident predictions of AE stability in both non-nuclear (H/He) and nuclear (D/T) operations in future devices. In particular, if radiative damping plays a significant role in overall stability, some AEs could be more easily destabilized in D/T plasmas than their H/He reference pulses, even before considering fast ion and alpha particle drive. Active MHD spectroscopy is also employed on select HD, HT, and DT plasmas to infer the effective ion mass, thereby closing the loop on isotope analysis and demonstrating a complementary method to typical diagnosis of the isotope ratio.
  •  
10.
  •  
11.
  • Fusai, Giuseppe Kito, et al. (author)
  • Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries
  • 2023
  • In: British Journal of Surgery. - : OXFORD UNIV PRESS. - 0007-1323 .- 1365-2168.
  • Journal article (peer-reviewed)abstract
    • Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide. Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters. Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries. Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761).
  •  
12.
  • Kohler, A., et al. (author)
  • Portal hyperperfusion after major liver resection and associated sinusoidal damage is a therapeutic target to protect the remnant liver
  • 2019
  • In: American Journal of Physiology-Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 317:3
  • Journal article (peer-reviewed)abstract
    • Extended liver resection results in loss of a large fraction of the hepatic vascular bed, thereby causing abrupt alterations in perfusion of the remnant liver. Mechanisms of hemodynamic adaptation and associated changes in oxygen metabolism after liver resection and the effect of mechanical portal blood flow reduction were assessed. A pig model (n = 16) of extended partial hepatectomy was established that included continuous observation for 24 h under general anesthesia. Pigs were randomly separated into two groups, one with a portal flow reduction of 70% compared with preoperative values, and the other as a control (n = 8, each). In controls, portal flow [mean (SD)] increased from 74 (8) mL.min(-1).100 preoperatively to 240 (48) mL.min(-1).100 g(-1) at 6 h after resection (P < 0.001). Hepatic arterial buffer response was abolished after resection. Oxygen uptake per unit liver mass increased from 4.0 (1.1) mL.min(-1) .100 g preoperatively to 7.7 (1.7) mL.min(-1) .100 g(-1) 8 h after resection (P = 0.004). Despite this increase in relative oxygen uptake, total hepatic oxygen consumption (Vo(2)) was not maintained, and markers of hypoxia and anaerobic metabolism were significantly increased in hepatocytes after resection. Reduced postoperative portal flow was associated with significantly decreased levels of aspartate aminotransferase and bilirubin and increased hepatic clearance of indocyanine green. In conclusion, major liver resection was associated with persistent portal hyperperfusion, loss of the hepatic arterial buffer response, decreased total hepatic (V) over doto(2) and with increased anaerobic metabolism. Portal flow modulation by partial portal vein occlusion attenuated liver injury after extended liver resection. NEW & NOTEWORTHY Because of continuous monitoring. the experiments allow precise observation of the influence of liver resection on systemic and local abdominal hemodynamic alterations and oxygen metabolism. Major liver resection is associated with significant and persistent portal hyperperfusion and loss of hepatic arterial buffer response. The correlation of portal hyperperfusion and parameters of liver injury and dysfunction offers a novel therapeutic option to attenuate liver injury after extended liver resection.
  •  
13.
  •  
14.
  • Ruiter, SJS, et al. (author)
  • 3D Quantitative Ablation Margins for Prediction of Ablation Site Recurrence After Stereotactic Image-Guided Microwave Ablation of Colorectal Liver Metastases: A Multicenter Study
  • 2021
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 757167-
  • Journal article (peer-reviewed)abstract
    • Three-dimensional (3D) volumetric ablation margin assessment after thermal ablation of liver tumors using software has been described, but its predictive value on treatment efficacy when accounting for other factors known to correlate ablation site recurrence (ASR) remains unknown.PurposeTo investigate 3D quantitative ablation margins (3D-QAMs) as an algorithm to predict ASR within 1 year after stereotactic microwave ablation (SMWA) for colorectal liver metastases (CRLM).Materials and MethodsSixty-five tumors in 47 patients from a prospective multicenter study of patients undergoing SMWA for CRLM were included in this retrospective 3D-QAM analysis. Using a previously developed algorithm, 3D-QAM defined as the distribution of tumor to ablation surface distances was assessed in co-registered pre- and post-ablation CT scans. The discriminatory power and optimal cutoff values for 3D-QAM were assessed using receiver operating characteristic (ROC) curves. Multivariable logistic regression analysis using generalized estimating equations was applied to investigate the impact of various 3D-QAM outputs on 1-year ASR while accounting for other known influencing factors.ResultsTen of the 65 (15.4%) tumors included for 3D-QAM analysis developed ASR. ROC analyses identified i) 3D-QAM &lt;1 mm for &gt;23% of the tumor surface, ii) 3D-QAM &lt;5 mm for &gt;45%, and iii) the minimal ablation margin (MAM) as the 3D-QAM outputs with optimal discriminatory qualities. The multivariable regression model without 3D-QAM yielded tumor diameter and KRAS mutation as 1-year ASR predictors. When adding 3D-QAM, this factor became the main predictor of 1-year ASR [odds ratio (OR) 21.67 (CI 2.48, 165.21) if defined as &gt;23% &lt;1 mm; OR 0.52 (CI 0.29, 0.95) if defined as MAM].Conclusions3D-QAM allows objectifiable and standardized assessment of tumor coverage by the ablation zone after SMWA. Our data shows that 3D-QAM represents the most important factor predicting ASR within 1 year after SMWA of CRLM.
  •  
15.
  • Sandu, RM, et al. (author)
  • Volumetric Quantitative Ablation Margins for Assessment of Ablation Completeness in Thermal Ablation of Liver Tumors
  • 2021
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 623098-
  • Journal article (peer-reviewed)abstract
    • In thermal ablation of liver tumors, complete coverage of the tumor volume by the ablation volume with a sufficient ablation margin is the most important factor for treatment success. Evaluation of ablation completeness is commonly performed by visual inspection in 2D and is prone to inter-reader variability. This work aimed to introduce a standardized approach for evaluation of ablation completeness after CT-guided thermal ablation of liver tumors, using volumetric quantitative ablation margins (QAM).MethodsA QAM computation metric based on volumetric segmentations of tumor and ablation areas and signed Euclidean surface distance maps was developed, including a novel algorithm to address QAM computation in subcapsular tumors. The code for QAM computation was verified in artificial examples of tumor and ablation spheres simulating varying scenarios of ablation margins. The applicability of the QAM metric was investigated in representative cases extracted from a prospective database of colorectal liver metastases (CRLM) treated with stereotactic microwave ablation (SMWA).ResultsApplicability of the proposed QAM metric was confirmed in artificial and clinical example cases. Numerical and visual options of data presentation displaying substrata of QAM distributions were proposed. For subcapsular tumors, the underestimation of tumor coverage by the ablation volume when applying an unadjusted QAM method was confirmed, supporting the benefits of using the proposed algorithm for QAM computation in these cases. The computational code for developed QAM was made publicly available, encouraging the use of a standard and objective metric in reporting ablation completeness and margins.ConclusionThe proposed volumetric approach for QAM computation including a novel algorithm to address subcapsular liver tumors enables precision and reproducibility in the assessment of ablation margins. The quantitative feedback on ablation completeness opens possibilities for intra-operative decision making and for refined analyses on predictability and consistency of local tumor control after thermal ablation of liver tumors.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Tinguely, P, et al. (author)
  • Stereotactic and Robotic Minimally Invasive Thermal Ablation of Malignant Liver Tumors: A Systematic Review and Meta-Analysis
  • 2021
  • In: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 713685-
  • Research review (other academic/artistic)abstract
    • Stereotactic navigation techniques aim to enhance treatment precision and safety in minimally invasive thermal ablation of liver tumors. We qualitatively reviewed and quantitatively summarized the available literature on procedural and clinical outcomes after stereotactic navigated ablation of malignant liver tumors.MethodsA systematic literature search was performed on procedural and clinical outcomes when using stereotactic or robotic navigation for laparoscopic or percutaneous thermal ablation. The online databases Medline, Embase, and Cochrane Library were searched. Endpoints included targeting accuracy, procedural efficiency, and treatment efficacy outcomes. Meta-analysis including subgroup analyses was performed.ResultsThirty-four studies (two randomized controlled trials, three prospective cohort studies, 29 case series) were qualitatively analyzed, and 22 studies were included for meta-analysis. Weighted average lateral targeting error was 3.7 mm (CI 3.2, 4.2), with all four comparative studies showing enhanced targeting accuracy compared to free-hand targeting. Weighted average overall complications, major complications, and mortality were 11.4% (6.7, 16.1), 3.4% (2.1, 5.1), and 0.8% (0.5, 1.3). Pooled estimates of primary technique efficacy were 94% (89, 97) if assessed at 1–6 weeks and 90% (87, 93) if assessed at 6–12 weeks post ablation, with remaining between-study heterogeneity. Primary technique efficacy was significantly enhanced in stereotactic vs. free-hand targeting, with odds ratio (OR) of 1.9 (1.2, 3.2) (n = 6 studies).ConclusionsAdvances in stereotactic navigation technologies allow highly precise and safe tumor targeting, leading to enhanced primary treatment efficacy. The use of varying definitions and terminology of safety and efficacy limits comparability among studies, highlighting the crucial need for further standardization of follow-up definitions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view