SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tscharntke Teja) "

Search: WFRF:(Tscharntke Teja)

  • Result 1-47 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Albrecht, Matthias, et al. (author)
  • The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield : a quantitative synthesis
  • 2020
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 23:10, s. 1488-1498
  • Journal article (peer-reviewed)abstract
    • Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.
  •  
2.
  • Alignier, Audrey, et al. (author)
  • Configurational crop heterogeneity increases within-field plant diversity
  • 2020
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:4, s. 654-663
  • Journal article (peer-reviewed)abstract
    • Increasing landscape heterogeneity by restoring semi-natural elements to reverse farmland biodiversity declines is not always economically feasible or acceptable to farmers due to competition for land. We hypothesized that increasing the heterogeneity of the crop mosaic itself, hereafter referred to as crop heterogeneity, can have beneficial effects on within-field plant diversity. Using a unique multi-country dataset from a cross-continent collaborative project covering 1,451 agricultural fields within 432 landscapes in Europe and Canada, we assessed the relative effects of compositional and configurational crop heterogeneity on within-field plant diversity components. We also examined how these relationships were modulated by the position within the field. We found strong positive effects of configurational crop heterogeneity on within-field plant alpha and gamma diversity in field interiors. These effects were as high as the effect of semi-natural cover. In field borders, effects of crop heterogeneity were limited to alpha diversity. We suggest that a heterogeneous crop mosaic may overcome the high negative impact of management practices on plant diversity in field interiors, whereas in field borders, where plant diversity is already high, landscape effects are more limited. Synthesis and applications. Our study shows that increasing configurational crop heterogeneity is beneficial to within-field plant diversity. It opens up a new effective and complementary way to promote farmland biodiversity without taking land out of agricultural production. We therefore recommend adopting manipulation of crop heterogeneity as a specific, effective management option in future policy measures, perhaps adding to agri-environment schemes, to contribute to the conservation of farmland plant diversity.
  •  
3.
  • Allan, Eric, et al. (author)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Journal article (peer-reviewed)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
4.
  • Barnes, Andrew D., et al. (author)
  • Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity
  • 2017
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1:10, s. 1511-1519
  • Journal article (peer-reviewed)abstract
    • The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds. Tropical land use resulted in increases in biomass and species richness via bottom-up cascading effects, but reductions via direct effects. When considering direct and cascading effects together, land use was found to reduce biomass and species richness, with increasing magnitude at higher trophic levels. Our analyses disentangle the multifaceted effects of land-use change on tropical ecosystems, revealing that biotic interactions on broad taxonomic scales influence the ecological outcome of anthropogenic perturbations to natural ecosystems.
  •  
5.
  • Batáry, Péter, et al. (author)
  • Biologia Futura : landscape perspectives on farmland biodiversity conservation
  • 2020
  • In: Biologia Futura. - : Springer Science and Business Media LLC. - 2676-8615 .- 2676-8607. ; 71:1-2, s. 9-18
  • Research review (peer-reviewed)abstract
    • European nature conservation has a strong focus on farmland harbouring threatened species that mainly co-occur with traditional agriculture shaped way before the green revolution. Increased land-use intensity in agriculture has caused an alarming decline in farmland biodiversity during the last century. How can a landscape perspective contribute to fostering our understanding on causes and consequences of farmland biodiversity decline and improving the effectiveness of conservation measures? To answer these questions, we discuss the importance of landscape compositional and configurational heterogeneity, understanding ecological mechanisms determining how landscape structure affects farmland biodiversity and considering the interplay of farmland biodiversity and ecosystem service conservation.
  •  
6.
  • Bosem Baillod, Aliette, et al. (author)
  • Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids
  • 2017
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901. ; 54:6, s. 1804-1813
  • Journal article (peer-reviewed)abstract
    • Agricultural landscapes are characterised by dynamic crop mosaics changing in composition and configuration over space and time. Although semi-natural habitat has been often shown to contribute to pest biological control, the effects of increasing landscape heterogeneity with cropland have been disregarded. Here, we examine how cereal aphids, their enemies and biological control are affected by the composition and configuration of the crop mosaic and its inter-annual change due to crop rotation. We studied the abundance of cereal aphids, natural enemies and aphid parasitism over 2 years on 51 winter wheat fields. Arthropods were monitored at three distances (0, 10, 30 m) from field borders. Fields were embedded in landscapes of 1-km diameter selected along orthogonal gradients of compositional crop heterogeneity (crop diversity), configurational heterogeneity (field border and grassy field boundary length) and inter-annual change in cover of aphid host habitats (cereal, maize and grassland). We aimed to disentangle spatial and temporal heterogeneity effects through these independent landscape gradients. Aphid densities were lower in landscapes with smaller field size (more field borders) coupled with high amounts of grassy field boundaries. Aphid densities decreased also in landscapes with higher crop diversity when the cover of aphid host habitat had decreased from the year before. Aphid natural enemy densities decreased with smaller field size and high amounts of grassy field boundaries. Aphid parasitism decreased with the inter-annual expansion in aphid host habitat, but only in landscapes with small field sizes. Synthesis and applications. Our study shows for the first time that cereal aphid numbers can be reduced by optimising the composition, configuration and temporal heterogeneity of the crop mosaic. We highlight the value of maintaining small field sizes in agricultural landscapes and high densities of grassy boundaries for reducing aphid abundance. Landscape-wide crop diversification can reduce aphid densities as well.
  •  
7.
  • Carvalheiro, Luisa Gigante, et al. (author)
  • The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness
  • 2014
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 17:11, s. 1389-1399
  • Journal article (peer-reviewed)abstract
    • Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.
  •  
8.
  • Clough, Yann, et al. (author)
  • Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
  •  
9.
  • Clough, Yann, et al. (author)
  • Services and disservices of ant communities in tropical cacao and coffee agroforestry systems
  • 2017
  • In: Ant-Plant Interactions : Impacts of Humans on Terrestrial Ecosystems - Impacts of Humans on Terrestrial Ecosystems. - : Cambridge University Press. - 9781107159754 - 9781316671825 ; , s. 333-355
  • Book chapter (peer-reviewed)abstract
    • Tropical tree crops such as cacao and coffee are produced around the tropics in diverse, multistrata agroforests as well as monoculture plantations Box 16.1 and references therein). The smallholders cultivating these systems battle pests and diseases that differ regionally and change over time, but often take a significant part of their yield, and therefore their revenue. In these perennial systems, ants are tremendously diverse and abundant, and affect pests and diseases directly as well as indirectly. Management by farmers of particular ant species to control insect pests has a long history (Offenberg, 2015). It is not until recently that the effects of ants on yields have been quantified. The complex interactions through which ants affect the crop plants, and how their mediation by species- and community-level characteristics, are starting to be better understood. The extent of the impact ants have on yields and revenue justifies the anthropocentric framing of the outcome of these interactions in terms of ecosystem services and disservices. In this chapter we present the current state of knowledge on agroforest ant communities, economically relevant ecological interactions driven by these communities and the way landscape-scale land-use change and climate change can be expected to influence ants and ant effects on insect communities and yields. Finally, we discuss how farmers may adapt their management to support ant-mediated ecosystem services and minimize potential disservices. We refer to Del Toro et al. (2012) and Choate and Drummond (2011) for more broad reviews of the role of ants in agriculture, as providers of biological control and other ecosystem services and disservices. Taxonomically and Functionally Rich Ant Communities. Ant surveys from cacao and coffee systems from throughout the range of these crops show a very high species richness that in most cases is comparable to that found in undisturbed forests (Table 16.1). Agroforests harbor arboreal and ground-dwelling ants. This includes species that nest in the canopy and trunk of the trees (dead wood, hollow twigs, foliage, sometimes with carton/silk/dirt nesting structures), in the herb layer, in the litter layer, on open ground, in epiphytic and parasitic plants, dead wood debris and other plant residues, such as dry cacao pods on the ground or on the tree (Room, 1971; De la Mora et al., 2013; Castaño-Meneses et al., 2015).
  •  
10.
  • De Palma, Adriana, et al. (author)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Journal article (peer-reviewed)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
11.
  • Denmead, Lisa H., et al. (author)
  • The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations
  • 2017
  • In: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 98:7, s. 1945-1956
  • Journal article (peer-reviewed)abstract
    • One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators.
  •  
12.
  • Drescher, Jochen, et al. (author)
  • Ecological and socio-economic functions across tropical land use systems after rainforest conversion
  • 2016
  • In: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 371:1694
  • Journal article (peer-reviewed)abstract
    • Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above-and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.
  •  
13.
  • Ganser, Dominik, et al. (author)
  • Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils
  • 2017
  • In: Agricultural and Forest Entomology. - : Wiley. - 1461-9555. ; 19:1, s. 60-69
  • Journal article (peer-reviewed)abstract
    • Oil palm expansion results in a loss of biodiversity and associated ecosystem services. However, there are factors that influence the severity of these impacts and enhancing biodiversity within plantations is important. In the present study, we examined the role of epiphytes for supporting arthropod communities in oil palm plantations in Sumatra, Indonesia. We considered the effects of landscape context and local characteristics (epiphyte cover, herbicide use and local microclimate) on arthropod communities and litter decomposition in oil palm leaf axils. We surveyed arthropods and measured decomposition rates at two different heights on 80 oil palms located at the centre and edge of eight plantations. We found that oil palms at the edge of plantations hosted a higher abundance and more arthropod taxa than oil palms in the centre of plantations. Moreover, organic matter mass and height of the leaf axil were important for arthropod communities, and the decomposition rate was negatively related to ant abundance. However, epiphyte cover did not influence arthropod communities. The results of the present study show that leaf axils with more organic matter and at a higher location on the oil palm promote arthropod biodiversity. Furthermore, oil palm plantations adjacent to different land-use systems have enhanced biodiversity.
  •  
14.
  • Garibaldi, Lucas A., et al. (author)
  • Trait matching of flower visitors and crops predicts fruit set better than trait diversity
  • 2015
  • In: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 52:6, s. 1436-1444
  • Research review (peer-reviewed)abstract
    • Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editor's Choice
  •  
15.
  • Garibaldi, Lucas A., et al. (author)
  • Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6127, s. 1608-1611
  • Journal article (peer-reviewed)abstract
    • The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
  •  
16.
  • Gras, Pierre, et al. (author)
  • How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry
  • 2016
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901. ; , s. 953-963
  • Journal article (peer-reviewed)abstract
    • Tropical agroforests are diverse systems where several predator groups shape animal communities and plant-arthropod interactions. Ants, birds and bats in particular can reduce herbivore numbers and thereby increase crop yield. However, the relative importance of these groups, whether they interact, and how this interaction is affected by management and landscape context, is poorly understood. We jointly manipulated access of ants, birds and bats in Indonesian smallholder cacao agroforestry across gradients of shade and distance to natural forest. We quantified arthropod abundance, pest damage and yield. In control treatments, yield was highest under 30-40% canopy cover. Ant exclusion strongly reduced yield (from 600 to 300 kg ha-1 year-1) at 15% canopy cover. Bird exclusion impaired yield (from 400 to 250 kg ha-1 year-1) at 60% and enhanced yield (from 600 to 900 kg ha-1 year-1) at 15% canopy cover, while bats had no effect. Yield increased with forest proximity, a pattern not related to predator access. No interactive effects among predator exclusions on yield, pest damage and arthropod communities were found. Ant exclusion increased numbers of herbivores below 30% canopy cover, without reducing spider abundances. Bird exclusion reduced herbivore and increased spider abundances. Synthesis and applications. Using exclusion studies, we estimated that ants and birds cause cacao yield to vary between 100 and 800 kg ha-1 year-1, depending on shade-tree management. In all but the most shaded agroforests, ants were pivotal in supporting yields. Yields under low-canopy cover were strongly dependent on access by predator groups, with birds reducing rather than increasing yield. Hence, cacao farmers should refrain from disturbing ant communities and maintain 30-40% shade-tree canopy cover not only for ecophysiological reasons but also to buffer variability in predator communities.
  •  
17.
  • Hambäck, Peter, et al. (author)
  • Top-down and bottom-up effects on the spatiotemporal dynamics of cereal aphids: testing scaling theory for local density
  • 2007
  • In: Oikos. - : Wiley. - 0030-1299. ; 116:12, s. 1995-2006
  • Journal article (peer-reviewed)abstract
    • The relationship between density and area depends on local growth rates and the area-dependence of migration rates. These rates vary among taxa due to dispersal behaviour, plot productivity and natural enemy impact. Previous studies in aphids suggest that aphid densities are highest in patches of intermediate sizes, and lower in small and large patches. The suggested mechanism causing these patterns is that the dispersal behaviour in aphids creates a mixture of area- and perimeter-dependent migration rates. In this paper, we used these predictions to examine the additional consequences of nutrient availability and natural enemies on the densityarearelationship. The derived predictions were compared to data from a system with three aphid species, a set of aphid parasitoids and generalist natural enemies, and at two levels of plant nutrient availability. We find that predictions from the model based only on dispersal and local growth agree with the temporal dynamics ofdensity-area relationships for aphids in high nutrient patches. In patches with low nutrients, high parasitism rates appeared to cause a negative density-area relationship for aphids, thereby deviating from predictions driven by the aphids’ dispersal behavior. Hence, the dispersal model with scale-dependent migration rates can provide a useful tool for understanding insect distribution in patch size gradients, but the relative importance of top-down effects can completely change with plot productivity.
  •  
18.
  • Hass, Annika L., et al. (author)
  • Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe
  • 2018
  • In: Proceedings of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 285:1872
  • Journal article (peer-reviewed)abstract
    • Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish (Raphanus sativus), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management.
  •  
19.
  • Hass, Annika Louise, et al. (author)
  • Maize-dominated landscapes reduce bumblebee colony growth through pollen diversity loss
  • 2019
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:2, s. 294-304
  • Journal article (peer-reviewed)abstract
    • Bumblebees are important pollinators for a wide range of crops and wild plants. Performance of their colonies depends on pollen and nectar as food resources, but flowering plants are scarce in modern agricultural landscapes. It is well-known that semi-natural habitats can enhance floral resources and bumblebee abundance, but the impact of different crop types and their heterogeneity at the landscape scale remains unclear. We tested the effect of two different crop types (oilseed rape [OSR] and maize) and of configurational (field border density) and compositional heterogeneity (crop diversity) on weight gain of buff-tailed bumblebee colonies (Bombus terrestris) and the pollen diversity collected by them in 20 landscapes in Central Germany. We found that augmenting maize cover had a detrimental effect on pollen diversity collected by bumblebees, probably due to intensive management resulting in low plant diversity. This low pollen diversity translated into reduced colony growth, since colonies with high pollen diversity gained more weight than colonies with low pollen diversity. In contrast, OSR cover and configurational and compositional heterogeneity did neither affect colony growth nor pollen diversity. However, for OSR, the timing of the flowering period was important. When OSR fields had a high flower cover at the end of the OSR blooming period, colonies showed increased growth rates. Synthesis and applications. Our results complement previous laboratory studies by showing that high pollen diversity leads to better colony performance under field conditions. Therefore, the maintenance of floral diversity in agricultural landscapes is crucial to ensure that bumblebees can fulfil their nutritional needs. However, the heterogeneity of crops, at least under the currently very low levels of crop rotation, does not contribute to this aim. In contrast, crop identity and timing of mass-flowering crops turned out to be important factors, as maize reduced pollen resources, while late blooming oilseed rape (OSR) was beneficial to bumblebee colonies. Hence, maize cover per landscape should be reduced and strategies to enhance landscape wide flower diversity, especially towards and after the end of oilseed rape bloom, should be promoted to support bumblebee colonies that provide important pollination services.
  •  
20.
  • Herbertsson, Lina, et al. (author)
  • Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes
  • 2021
  • In: Plant Ecology and Evolution. - : Societe Royale de Botanique de Belgique. - 2032-3913 .- 2032-3921. ; 154:3, s. 341-350
  • Journal article (peer-reviewed)abstract
    • Background and aims: Agricultural intensification and loss of farmland heterogeneity have contributed to population declines of wild bees and other pollinators, which may have caused subsequent declines in insect-pollinated wild plants.Material and methods: Using data from 37 studies on 22 pollinator-dependent wild plant species across Europe, we investigated whether flower visitation and seed set of insect-pollinated plants decline with an increasing proportion of arable land within 1 km.Key results: Seed set increased with increasing flower visitation by bees, most of which were wild bees, but not with increasing flower visitation by other insects. Increasing proportion of arable land had a strongly variable effect on seed set and flower visitation by bees across studies.Conclusion:Factors such as landscape configuration, local habitat quality, and temporally changing resource availability (e.g. due to mass-flowering crops or honey bee hives) could have modified the effect of arable land on pollination. While our results highlight that the persistence of wild bees is crucial to maintain plant diversity, we also show that pollen limitation due to declining bee populations in homogenized agricultural landscapes is not a universal driver causing parallel losses of bees and insect-pollinated plants. 
  •  
21.
  • Hudson, Lawrence N, et al. (author)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Journal article (peer-reviewed)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
22.
  • Hudson, Lawrence N., et al. (author)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Journal article (peer-reviewed)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
23.
  • Hutchinson, Louise A., et al. (author)
  • Using ecological and field survey data to establish a national list of the wild bee pollinators of crops
  • 2021
  • In: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 315
  • Journal article (peer-reviewed)abstract
    • The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.
  •  
24.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
25.
  • Klatt, Björn, et al. (author)
  • Bee pollination improves crop quality, shelf life and commercial value.
  • 2014
  • In: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954. ; 281:1775
  • Journal article (peer-reviewed)abstract
    • Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.
  •  
26.
  • Klatt, Björn, et al. (author)
  • Enhancing crop shelf life with pollination
  • 2014
  • In: Agriculture & Food Security. - : Springer Science and Business Media LLC. - 2048-7010. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Globally, high amounts of food are wasted due to insufficient quality and decay. Although pollination has been shown to increase crop quality, a possible impact on shelf life has not been quantitatively studied. Results: We tested how shelf life, represented by fruit decay, firmness and weight, changes as a function of pollination limitation in two European, commercially important strawberry varieties. Pollination limitation resulted in lower amounts of deformed fruits. Whereas 65% of wind-pollinated fruits were deformed, open pollination resulted in only 20% deformed fruits. During storage, the proportion of decayed fruits increased in relation to the degree of deformation. In the variety Yamaska, 80% of the fruits with high degrees of deformation decayed after four days, whereas in the variety Sonata, all highly deformed fruits had already decayed after three days. Fruit weight decreased independent from the degree of deformation. However, strongest deformations resulted in a generally lower fruit weight in Sonata, whereas in Yamaska, also medium deformed fruits had a lower weight than highly deformed fruits. Effects of deformation on firmness declines were mostly variety dependent. Whereas firmness declined similarly for all degrees of deformation for Yamaska, highly deformed fruits lost firmness fastest in Sonata. Conclusions: Our results suggest that crop pollination has the potential to reduce food loss and waste in pollinated crops and thus to contribute to global food security. However, this relationship between pollination and food waste has so far been almost completely ignored. Future pollination research should therefore focus not only on yield effects but also on crop quality. A more comprehensive understanding of how pollination can benefit global food security should lead to a more efficient crop production to help meeting future food demands.
  •  
27.
  • Klatt, Björn, et al. (author)
  • Flower volatiles, crop varieties and bee responses.
  • 2013
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Journal article (peer-reviewed)abstract
    • Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne) and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.
  •  
28.
  • Klatt, Björn K., 1980-, et al. (author)
  • Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences
  • 2023
  • In: Ecotoxicology. - New York, NY : Springer. - 0963-9292 .- 1573-3017. ; 32:10, s. 1247-1256
  • Journal article (peer-reviewed)abstract
    • Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape’s production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.
  •  
29.
  • Kleijn, David, et al. (author)
  • Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.
  • 2015
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Journal article (peer-reviewed)abstract
    • There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
  •  
30.
  • Lichtenberg, Elinor M., et al. (author)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Journal article (peer-reviewed)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
31.
  • Maas, Bea, et al. (author)
  • Avian species identity drives predation success in tropical cacao agroforestry
  • 2015
  • In: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 52:3, s. 735-743
  • Journal article (peer-reviewed)abstract
    • Avian ecosystem services such as the suppression of pests are considered to be of high ecological and economic importance in a range of ecosystems, especially in tropical agroforestry. However, how bird predation success is related to the diversity and composition of the bird community, as well as local and landscape factors, is poorly understood. We quantified arthropod predation in relation to the identity and diversity of insectivorous birds using experimental exposure of artificial, caterpillar-like prey in 15 smallholder cacao agroforestry systems differing in local shade-tree management and distance to primary forest. The bird community was assessed using both mist-netting (targeting active understorey insectivores) and point counts (higher completeness of species inventories). Bird predation was not related to local shade-tree management or overall bird species diversity, but to the activity of insectivorous bird species and the proximity to primary forest. Insectivore activity was best predicted by mist-netting-based data, not by point counts. We identified the abundant Indonesian endemic lemon-bellied white-eye Zosterops chloris as the main driver of predation on artificial prey.Synthesis and applications. The suppression of arthropods is a major ecosystem service provided by insectivorous birds in agricultural systems world-wide, potentially reducing herbivore damage on plants and increasing yields. Our results show that avian predation success can be driven by single and abundant insectivorous species, rather than by overall bird species richness. Forest proximity was important for enhancing the density of this key species, but did also promote bird species richness. Hence, our findings are both of economical as well as ecological interest because the conservation of nearby forest remnants will likely benefit human needs and biodiversity conservation alike. The suppression of arthropods is a major ecosystem service provided by insectivorous birds in agricultural systems world-wide, potentially reducing herbivore damage on plants and increasing yields. Our results show that avian predation success can be driven by single and abundant insectivorous species, rather than by overall bird species richness. Forest proximity was important for enhancing the density of this key species, but did also promote bird species richness. Hence, our findings are both of economical as well as ecological interest because the conservation of nearby forest remnants will likely benefit human needs and biodiversity conservation alike.
  •  
32.
  • Manning, Peter, et al. (author)
  • Transferring biodiversity-ecosystem function research to the management of 'real-world' ecosystems
  • 2019
  • In: Mechanisms underlying the relationship between biodiversity and ecosystem function. - London : Elsevier. - 9780081029121 - 9780081029138 ; , s. 323-356
  • Book chapter (peer-reviewed)abstract
    • Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of 'real-world' ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers.
  •  
33.
  • Marthy, William, et al. (author)
  • Assessing the biodiversity value of degraded lowland forest in Sumatra, Indonesia
  • 2016
  • In: Kukila. - 0216-9223. ; 19:1, s. 1-20
  • Journal article (peer-reviewed)abstract
    • Forest degradation, forest fires, and wildlife poaching have devastated biodiversity in Indonesia. To assess the impact of forest degradation and the potential for recovery, we used birds as a proxy for biodiversity and assessed density estimates (hereafter density) in the degraded lowland forest of Harapan Rainforest Ecosystem Restoration Concession (HRF) in Sumatra. In this study, a total of 149 bird species (from 5,317 individuals) were recorded. Of the 103 species for which densities could be calculated, 45% were lowland bird specialists (i.e. species occurring below 200 m above sea level in Sumatra), including three globally threatened and 41 Near-Threatened species. Comparison with bird densities in degraded forest of Borneo revealed that there was broad similarity across taxa but three species had significantly higher density, and four had significantly lower density, in HRF. The mosaic of degraded forest habitats in different stages of regeneration in HRF appears to support more individuals of some species, especially woodpeckers, than the Bornean sites, but fewer individuals of other species. Determining bird densities is essential to establish population baselines, allowing comparisons between sites and over time. The present study fills one gap, but we urge others to conduct similar studies to provide a better understanding of the temporal and spatial variation in bird density in Southeast Asia's degraded forests.
  •  
34.
  • Nurdiansyah, Fuad, et al. (author)
  • Biological control in Indonesian oil palm potentially enhanced by landscape context
  • 2016
  • In: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 232, s. 141-149
  • Journal article (peer-reviewed)abstract
    • Oil palm plantation expansion is occurring at a rapid pace. However, substantial yield losses from pest attacks are becoming major threats to the oil palm industry, while the potential role of conservation biological control, a sustainable and environmentally friendly solution for pest control, is still largely unknown. The type of vegetation surrounding oil palm plantations is likely to influence pest predation, and we tested this in Indonesia (Sumatra), the world's largest palm oil producer. We studied six different vegetation types adjacent to oil palm plantations: another oil palm plantation (control), weedy oil palm, weedy rubber, scrub, jungle rubber, and secondary forest. Each border type was replicated eight times. We quantified predation rates and predator occurrences using dummy caterpillars and mealworms 20 m inside of the adjacent vegetation (OUT 20) as well as 20 m (IN 20) and 50 (IN 50) m inside the oil palm plantation. Ants and bush crickets were the most prominent predators in the plantations, whereas birds, bats, monkeys, beetles, and molluscs played a minor role. Mean percentage of ant and cricket predation rate in control border OUT 20 were 16.39% and 7.16% respectively, IN 20 were 16.03% and 6.1%, and IN 50 were 14.47% and 7.48%, while for other borders other than control, mean percentages OUT 20 m were 28.90% and 12.26% respectively, IN 20 m were 26.61% and 12.40%, and IN 50 m were 22.93% and 10.58%. Predation rates were ∼70% higher in non-oil palm habitat, indicating the need for improved vegetation diversification inside plantations. Overall predation rates in oil palm decreased slightly but significantly with distance to the border. Our results suggest that maintaining non-oil palm vegetation in the areas adjacent to plantations and promoting weedy strips within the plantations are potentially effective management tools for conserving and developing biological control in oil palm in the future.
  •  
35.
  • Rizali, Akhmad, et al. (author)
  • Separating effects of species identity and species richness on predation, pathogen dissemination and resistance to invasive species in tropical ant communities
  • 2018
  • In: Agricultural and Forest Entomology. - : Wiley. - 1461-9555. ; 20:1, s. 122-130
  • Journal article (peer-reviewed)abstract
    • Ants are abundant in natural and managed tropical ecosystems and can have an impact on herbivorous arthropods, as well as plant pathogens. Although it has been shown for plants that the diversity of communities can result in improved ecosystem functioning, it remains uncertain how the species richness of ants affects multiple ecosystem services and disservices. In the present study, we used experimentally enhanced natural gradients in ant species richness on 100 cacao trees in a plantation aiming to analyze the effect of ant species identity and species richness on predation pressure and the incidence of cacao pod borer (CPB), as well as the spread of black pod disease (BPD). Ant species richness did not significantly improve predation of experimentally exposed insects, and was not associated with a reduction in the incidence of CPB. However, the incidence of BPD was higher in ant species rich trees, presumably because more ant species were pathogen vectors. The identity of the dominant ant species affected the incidence of CPB and BPD, as well as predation pressure. Although both ant species richness and identity affected ecosystem services and disservices delivered by the ant community, the results of the present study suggest that the identity of dominant ants is the main driver for ecosystem services in these systems.
  •  
36.
  • Rundlöf, Maj, et al. (author)
  • Does conservation on farmland contribute to halting the biodiversity decline?
  • 2011
  • In: Trends in ecology & evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 26, s. 474-481
  • Research review (peer-reviewed)abstract
    • Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap.
  •  
37.
  • Schleuning, Matthias, et al. (author)
  • Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes
  • 2012
  • In: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 22:20, s. 1925-1931
  • Journal article (peer-reviewed)abstract
    • Species-rich tropical communities are expected to be more specialized than their temperate counterparts [1-3]. Several studies have reported increasing biotic specialization toward the tropics [4-7], whereas others have not found latitudinal trends once accounting for sampling bias [8, 9] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal Specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers to low plant diversity. This could explain why the latitudinal specialization gradient is reversed relative to the latitudinal diversity gradient. Low mutualistic network specialization in the tropics suggests higher tolerance against extinctions in tropical than in temperate communities.
  •  
38.
  • Schlinkert, Hella, et al. (author)
  • Feeding damage to plants increases with plant size across 21 Brassicaceae species
  • 2015
  • In: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 179:2, s. 455-466
  • Journal article (peer-reviewed)abstract
    • Plant size is a major predictor of ecological functioning. We tested the hypothesis that feeding damage to plants increases with plant size, as the conspicuousness of large plants makes resource finding and colonisation easier. Further, large plants can be attractive to herbivores, as they offer greater amounts and ranges of resources and niches, but direct evidence from experiments testing size effects on feeding damage and consequently on plant fitness is so far missing. We established a common garden experiment with a plant size gradient (10-130 cm height) using 21 annual Brassicaceae species, and quantified plant size, biomass and number of all aboveground components (flowers, fruits, leaves, stems) and their proportional feeding damage. Plant reproductive fitness was measured using seed number, 1000 seed weight and total seed weight. Feeding damage to the different plant components increased with plant size or component biomass, with mean damage levels being approximately 30 % for flowers, 5 % for fruits and 1 % for leaves and stems. Feeding damage affected plant reproductive fitness depending on feeding damage type, with flower damage having the strongest effect, shown by greatly reduced seed number, 1000 seed weight and total seed weight. Finally, we found an overall negative effect of plant size on 1000 seed weight, but not on seed number and total seed weight. In conclusion, being conspicuous and attractive to herbivores causes greater flower damage leading to higher fitness costs for large plants, which might be partly counterbalanced by benefits such as enhanced competitive/compensatory abilities or more mutualistic pollinator visits.
  •  
39.
  • Schlinkert, Hella, et al. (author)
  • Plant size affects mutualistic and antagonistic interactions and reproductive success across 21 Brassicaceae species
  • 2016
  • In: Ecosphere. - : Wiley. - 2150-8925. ; 7:12
  • Journal article (peer-reviewed)abstract
    • Plant size has been hypothesized to be a major driver of biotic interactions. However, it is little understood how plant size affects plant mutualists vs. antagonists and the plant's resulting reproductive success. We established a common garden experiment covering an interspecific plant size gradient (from 10 to 130 cm height) across 21 annual Brassicaceae species, thereby standardizing features of habitat and surrounding landscape. We assessed flower-visiting pollinators and florivores (pollen beetle adults and larvae) and the resulting effects of all these flower-visiting insects on plant reproductive success. Besides flower characteristics (size, abundance, color), plant size had a generally positive effect on abundance and species richness of pollinators as well as on abundance of pollen beetle adults and larvae. Pollen beetles reduced seed number as well as thousand-seed weight, whereas pollinators increased seed number only. Overall, increasing plant size led to less thousand-seed weight but had no effect on seed number, indicating counterbalancing effects of herbivory and pollination. In conclusion, seed number of large plant species should benefit from locations with many pollinators and few herbivores and small plant species' seed number from locations with few pollinators and many herbivores.
  •  
40.
  • Schlinkert, Hella, et al. (author)
  • Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.
  • 2015
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Journal article (peer-reviewed)abstract
    • Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.
  •  
41.
  • Schmidt, Fernando A., et al. (author)
  • Similar alpha and beta diversity changes in tropical ant communities, comparing savannas and rainforests in Brazil and Indonesia
  • 2017
  • In: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 185:3, s. 487-498
  • Journal article (peer-reviewed)abstract
    • Local biodiversity can be expected to be similar worldwide if environmental conditions are similar. Here, we hypothesize that tropical ant communities with different types of regional species pools but at similar habitat types in Brazil and Indonesia show similar diversity patterns at multiple spatial scales, when comparing (1) the relative contribution of alpha and beta diversity to gamma diversity; (2) the number of distinct communities (community differentiation); and (3) the drivers of β-diversity (species replacement or species loss/gain) at each spatial scale. In both countries, rainforests and savannas (biome scale) were represented by three landscapes (landscape scale), each with four transects (site scale) and each transect with 10 pitfall traps (local scale). At the local scale, α-diversity was higher and β-diversity lower than expected from null models. Hence, we observed a high coexistence of species across biomes. The replacement of species seemed the most important factor for β-diversity among sites and among landscapes across biomes. Species sorting, landscape-moderated species distribution and neutral drift are potential mechanisms for the high β-diversity among sites within landscapes. At the biome scale, different evolutionary histories produced great differences in ant community composition, so the replacement of species is, at this scale, the most important driver of beta diversity. According to these key findings, we conclude that distinct regional ant species pools from similar tropical habitat types are similarly constrained across several spatial scales, regardless of the continent considered.
  •  
42.
  • Senapathi, Deepa, et al. (author)
  • Wild insect diversity increases inter-annual stability in global crop pollinator communities
  • 2021
  • In: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954 .- 0962-8452. ; 288:1947
  • Journal article (peer-reviewed)abstract
    • While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
  •  
43.
  • Settele, Josef, et al. (author)
  • Rice ecosystem services in South-east Asia
  • 2018
  • In: Paddy and Water Environment. - : Springer. - 1611-2490 .- 1611-2504. ; 16:2, s. 211-224
  • Journal article (other academic/artistic)
  •  
44.
  • Sirami, Clélia, et al. (author)
  • Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:33, s. 16442-16447
  • Journal article (peer-reviewed)abstract
    • Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.
  •  
45.
  • Sutcliffe, Laura M. E., et al. (author)
  • Harnessing the biodiversity value of Central and Eastern European farmland
  • 2015
  • In: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 21:6, s. 722-730
  • Journal article (peer-reviewed)abstract
    • A large proportion of European biodiversity today depends on habitat provided by low-intensity farming practices, yet this resource is declining as European agriculture intensifies. Within the European Union, particularly the central and eastern new member states have retained relatively large areas of species-rich farmland, but despite increased investment in nature conservation here in recent years, farmland biodiversity trends appear to be worsening. Although the high biodiversity value of Central and Eastern European farmland has long been reported, the amount of research in the international literature focused on farmland biodiversity in this region remains comparatively tiny, and measures within the EU Common Agricultural Policy are relatively poorly adapted to support it. In this opinion study, we argue that, 10years after the accession of the first eastern EU new member states, the continued under-representation of the low-intensity farmland in Central and Eastern Europe in the international literature and EU policy is impeding the development of sound, evidence-based conservation interventions. The biodiversity benefits for Europe of existing low-intensity farmland, particularly in the central and eastern states, should be harnessed before they are lost. Instead of waiting for species-rich farmland to further decline, targeted research and monitoring to create locally appropriate conservation strategies for these habitats is needed now.
  •  
46.
  • Toledo-Hernández, Manuel, et al. (author)
  • Cultural homegarden management practices mediate arthropod communities in Indonesia
  • 2016
  • In: Journal of Insect Conservation. - : Springer Science and Business Media LLC. - 1366-638X .- 1572-9753. ; 20:3, s. 373-382
  • Journal article (peer-reviewed)abstract
    • Tropical forest loss and transformation to agroecosystems have serious impacts on biodiversity, associated ecosystem services and the livelihood of local people. The high crop plant biodiversity and low intensity management in many homegardens could play an important role in the preservation of biodiversity in modified landscapes, as well as sustain food security of low income households. In this study, we focused on the role of the owner’s cultural background as migrants (from the island of Java) or non-migrants (local residents) for homegarden characteristics, such as size, management diversification, and crop species richness, and their effect on arthropod communities in Jambi province, Indonesia. Vane traps, pitfall traps and sweep netting were used to survey the arthropod communities, in particular bees and wasps, in 24 homegardens. Our results show that the native Jambi locals used a smaller number of management practices and had smaller homegardens than the Javanese transmigrants, whereas crop species richness did not differ. Management diversification and crop species richness were positively related to arthropod abundance as well as species richness of bees and wasps, presumably due to the enhanced homegarden heterogeneity. Our findings suggest that the cultural practices of migrant versus non-migrant land-use managers, which is usually neglected in agroecology, can be a major determinant of management practices shaping community structure and services of beneficial arthropods.
  •  
47.
  • Wielgoss, Arno, et al. (author)
  • Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems.
  • 2014
  • In: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954. ; 281:1775
  • Journal article (peer-reviewed)abstract
    • Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-47 of 47
Type of publication
journal article (42)
research review (3)
book chapter (2)
Type of content
peer-reviewed (45)
other academic/artistic (2)
Author/Editor
Tscharntke, Teja (47)
Clough, Yann (25)
Westphal, Catrin (15)
Batáry, Péter (13)
Holzschuh, Andrea (10)
Rundlöf, Maj (9)
show more...
Steffan-Dewenter, In ... (9)
Bommarco, Riccardo (8)
Potts, Simon G. (8)
Grass, Ingo (7)
Kleijn, David (6)
Klein, Alexandra Mar ... (6)
Denmead, Lisa H. (6)
Carvalheiro, Luísa G ... (5)
Entling, Martin H. (5)
Goulson, Dave (5)
Herzog, Felix (5)
Isaacs, Rufus (5)
Kremen, Claire (5)
Aizen, Marcelo A. (5)
Bartomeus, Ignasi (5)
Petanidou, Theodora (5)
Stout, Jane C. (5)
Rader, Romina (5)
Kreft, Holger (5)
Báldi, András (5)
Power, Eileen F. (5)
Vergara, Carlos H. (5)
Ekroos, Johan (4)
Abrahamczyk, Stefan (4)
Klatt, Björn (4)
Williams, Neal M. (4)
Knop, Eva (4)
Garratt, Michael P.D ... (4)
Poveda, Katja (4)
Martin, Jean Louis (4)
Dormann, Carsten F. (4)
Winfree, Rachael (4)
Schweiger, Oliver (4)
Samnegård, Ulrika (4)
Darras, Kevin (4)
Knohl, Alexander (4)
Diekötter, Tim (4)
Buchori, Damayanti (4)
Peres, Carlos A. (4)
Cunningham, Saul A. (4)
Farwig, Nina (4)
Jauker, Birgit (4)
Le Féon, Violette (4)
Morales, Carolina L. (4)
show less...
University
Lund University (43)
Swedish University of Agricultural Sciences (14)
Stockholm University (9)
Linnaeus University (3)
Umeå University (2)
Royal Institute of Technology (1)
show more...
Halmstad University (1)
University West (1)
Mid Sweden University (1)
Chalmers University of Technology (1)
show less...
Language
English (47)
Research subject (UKÄ/SCB)
Natural sciences (41)
Agricultural Sciences (22)
Social Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view