SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Twort Victoria G.) "

Search: WFRF:(Twort Victoria G.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gemmell, Neil J., et al. (author)
  • The tuatara genome reveals ancient features of amniote evolution
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 584:7821, s. 403-409
  • Journal article (peer-reviewed)abstract
    • The tuatara (Sphenodon punctatus)—the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2—is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which—at approximately 5 Gb—is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.
  •  
2.
  • Ghanavi, Hamid Reza, et al. (author)
  • Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera)
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Journal article (peer-reviewed)abstract
    • Models estimate that up to 80% of all butterfly and moth species host vertically transmitted endosymbiotic microorganisms, which can affect the host fitness, metabolism, reproduction, population dynamics, and genetic diversity, among others. The supporting empirical data are however currently highly biased towards the generally more colourful butterflies, and include less information about moths. Additionally, studies of symbiotic partners of Lepidoptera predominantly focus on the common bacterium Wolbachia pipientis, while infections by other inherited microbial partners have more rarely been investigated. Here, we mine the whole genome sequence data of 47 species of Erebidae moths, with the aims to both inform on the diversity of symbionts potentially associated with this Lepidoptera group, and discuss the potential of metagenomic approaches to inform on host associated microbiome diversity. Based on the result of Kraken2 and MetaPhlAn2 analyses, we found clear evidence of the presence of Wolbachia in four species. Our result also suggests the presence of three other bacterial symbionts (Burkholderia spp., Sodalis spp. and Arsenophonus spp.) in three other moth species. Additionally, we recovered genomic material from bracovirus in about half of our samples. The detection of the latter, usually found in mutualistic association to braconid parasitoid wasps, may inform on host-parasite interactions that take place in the natural habitat of the Erebidae moths, suggesting either contamination with material from species of the host community network, or horizontal transfer of members of the microbiome between interacting species.
  •  
3.
  • Twort, Victoria G., et al. (author)
  • Museomics of a rare taxon : placing Whalleyanidae in the Lepidoptera Tree of Life
  • 2021
  • In: Systematic Entomology. - : Wiley. - 0307-6970 .- 1365-3113. ; 46:4, s. 926-937
  • Journal article (peer-reviewed)abstract
    • Museomics is a valuable approach that utilizes the diverse biobanks that are natural history museums. The ability to sequence genomes from old specimens has expanded not only the variety of interesting taxa available to study but also the scope of questions that can be investigated in order to further knowledge about biodiversity. Here, we present whole genome sequencing results from the enigmatic genus Whalleyana (comprising two species – occurring in drier biomes of Madagascar – previously placed in a monotypic superfamily, Whalleyanoidea), as well as from certain species of the families Callidulidae and Hyblaeidae (Calliduloidea and Hyblaeoidea, respectively). Library preparation was carried out on four museum specimens and one existing DNA extract and sequenced with Illumina short reads. De novo assembly resulted in highly fragmented genomes with the N50 ranging from 317 to 2078 bp. Mining of a manually curated gene set of 331 genes from these draft genomes had an overall gene recovery rate of 64–90%. Phylogenetic analysis places Whalleyana as sister to Callidulidae and Hyblaea as sister to Pyraloidea. Since the former sister-group relationship turns out to be also supported by ten morphological synapomorphies, we propose to formally assign the Whalleyanidae to the superfamily Calliduloidea. These results highlight the usefulness of not only museum specimens but also existing DNA extracts, for whole genome sequencing and gene mining for phylogenomic studies.
  •  
4.
  • Twort, Victoria G., et al. (author)
  • New Zealand Tree and Giant Wētā (Orthoptera) Transcriptomics Reveal Divergent Selection Patterns in Metabolic Loci
  • 2019
  • In: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 11:4, s. 1293-1306
  • Journal article (peer-reviewed)abstract
    • Exposure to low temperatures requires an organism to overcome physiological challenges. New Zealand wētā belonging to the genera Hemideina and Deinacrida are found across a wide range of thermal environments and therefore subject to varying selective pressures. Here we assess the selection pressures across the wētā phylogeny, with a particular emphasis on identifying genes under positive or diversifying selection. We used RNA-seq to generate transcriptomes for all 18 Deinacrida and Hemideina species. A total of 755 orthologous genes were identified using a bidirectional best-hit approach, with the resulting gene set encompassing a diverse range of functional classes. Analysis of ortholog ratios of synonymous to nonsynonymous amino acid changes found 83 genes that are under positive selection for at least one codon. A wide variety of Gene Ontology terms, enzymes, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are represented among these genes. In particular, enzymes involved in oxidative phosphorylation, melanin synthesis, and free-radical scavenging are represented, consistent with physiological and metabolic changes that are associated with adaptation to alpine environments. Structural alignment of the transcripts with the most codons under positive selection revealed that the majority of sites are surface residues, and therefore have the potential to influence the thermostability of the enzyme, with the exception of prophenoloxidase where two residues near the active site are under selection. These proteins provide interesting candidates for further analysis of protein evolution.
  •  
5.
  • Twort, Victoria G., et al. (author)
  • Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina)
  • 2017
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:11
  • Journal article (peer-reviewed)abstract
    • Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intraspecific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.
  •  
6.
  • Wu, Chen, et al. (author)
  • Assembling large genomes : Analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction
  • 2017
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. Results: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. Conclusions: The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view