SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ue Li Pen ) "

Search: WFRF:(Ue Li Pen )

  • Result 1-29 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.
  •  
2.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.
  •  
3.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be
  •  
4.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
5.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n(e) similar to 10(4-7) cm(-3), magnetic field strength B similar to 1-30 G, and electron temperature T-e similar to (1-12) x 10(10) K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10(-4) M yr(-1).
  •  
6.
  • Farah, Joseph, et al. (author)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
7.
  • Goddi, Ciriaco, et al. (author)
  • Polarimetric Properties of Event Horizon Telescope Targets from ALMA
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.
  •  
8.
  • Narayan, Ramesh, et al. (author)
  • The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
  •  
9.
  • Porth, Oliver, et al. (author)
  • The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project
  • 2019
  • In: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 243:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.
  •  
10.
  • Psaltis, Dimitrios, et al. (author)
  • Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole
  • 2020
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 125:14
  • Journal article (peer-reviewed)abstract
    • The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.
  •  
11.
  • Satapathy, Kaushik, et al. (author)
  • The Variability of the Black Hole Image in M87 at the Dynamical Timescale
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 925:1
  • Journal article (peer-reviewed)abstract
    • The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5-61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of similar to 3 degrees-5 degrees. The only triangles that exhibit substantially higher variability (similar to 90 degrees-180 degrees) are the ones with baselines that cross the visibility amplitude minima on the u-v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.
  •  
12.
  • Wielgus, Maciek, et al. (author)
  • Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 901:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature-a ring with azimuthal brightness asymmetry-and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of similar to 40 mu as diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.
  •  
13.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
14.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
15.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching similar to 100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 +/- 2.3 mu as (68% credible intervals), with the ring thickness constrained to have an FWHM between similar to 30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8(-0.7)(+1.4) mu as, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0(-0.6)(+1.1) x 10(6) M-circle dot.
  •  
16.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein's equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within similar to 10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.
  •  
17.
  • Broderick, Avery E., et al. (author)
  • Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
  •  
18.
  • Issaoun, Sara, et al. (author)
  • Resolving the Inner Parsec of the Blazar J1924-2914 with the Event Horizon Telescope
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 934:2
  • Journal article (peer-reviewed)abstract
    • The blazar J1924-2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center's black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 mu as resolution of the EHT. J1924-2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5-11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924-2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90 degrees between 2.3 and 230 GHz. Linearly polarized intensity images of J1924-2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.
  •  
19.
  • Torne, Pablo, et al. (author)
  • A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set
  • 2023
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 959:1
  • Journal article (peer-reviewed)abstract
    • In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (lambda = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars-which typically exhibit steep emission spectra-are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (less than or similar to 2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.
  •  
20.
  • Wielgus, Maciek, et al. (author)
  • Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5-11 in the 1.3 mm wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very long baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare and exhibit strongly enhanced variability. All of the light curves are consistent with a red-noise process, with a power spectral density (PSD) slope measured to be between -2 and -3 on timescales between 1 minute and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 hr. The spectral energy distribution is flat at 220 GHz, and there are no time lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*'s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines.
  •  
21.
  • Ahn, Kyungjin, et al. (author)
  • The Inhomogeneous Background Of H2-Dissociating Radiation During Cosmic Reionization
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 695, s. 1430-1445
  • Journal article (peer-reviewed)abstract
    • The first, self-consistent calculations are presented of the cosmological, H2-dissociating UV background produced during the epoch of reionization by the sources of reionization. Large-scale radiative transfer simulations of reionization trace the impact of all the ionizing starlight on the intergalactic medium (IGM) from all the sources in our simulation volume down to dwarf galaxies of mass ~108 M sun, identified by very high resolution N-body simulations, including the self-regulating effect of IGM photoheating on dwarf galaxy formation. The UV continuum emitted below 13.6 eV by each source is then transferred through the same IGM, attenuated by atomic H Lyman series resonance lines, to predict the evolution of the inhomogeneous radiation background in the Lyman-Werner (LW) bands of H2 between 11 and 13.6 eV. On average, the intensity of this LW background is found to rise to the threshold level at which dissociation suppresses H2 cooling and star formation inside minihalos, long before reionization is complete. Spatial variations in the LW background are found which result from the clustering of sources associated with large-scale structure formation, such that intensity fluctuations correlate with matter density fluctuations. As a result, the LW background rises to the threshold level for H2 suppression earlier in the vicinity of the reionization sources and their H II regions.
  •  
22.
  • Iliev, Ilian T., et al. (author)
  • Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?
  • 2012
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 423:3, s. 2222-2253
  • Journal article (peer-reviewed)abstract
    • The prospect of detecting the first galaxies by observing their impact on the intergalactic medium (IGM) as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this with new large-scale radiative transfer simulations of reionization including the entire mass range of atomically cooling haloes (M > 108 M?). We divide these haloes into two groups, high-mass, atomically cooling haloes, or HMACHs (M > 109 M?), and low-mass, atomically cooling haloes, or LMACHs (108 < M < 109 M?), the latter being susceptible to negative feedback due to Jeans mass filtering in ionized regions, which leads to a process we refer to as self-regulation. We focus here on predictions of the redshifted 21-cm emission, to see if upcoming observations are capable of distinguishing a universe ionized primarily by HMACHs from one in which both HMACHs and LMACHs are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first-generation Epoch of Reionization 21-cm radio interferometer arrays should be able to distinguish the case of reionization by HMACHs alone from that by both HMACHs and LMACHs, together. Some reionization scenarios, e.g. one with abundant low-efficiency sources versus one with self-regulation, yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm probability distribution function (PDF) distributions. We also find that the skewness of the 21-cm PDF distribution smoothed with Low Frequency Array (LOFAR)-like resolution shows a clear feature correlated with the rise of the rms due to patchiness. This is independent of the reionization scenario and thus provides a new approach for detecting the rise of large-scale patchiness. The peak epoch of the 21-cm rms fluctuations depends significantly on the beam and bandwidth smoothing size as well as on the reionization scenario and can occur for ionized fractions as low as 30 per cent and as high as 70 per cent. Measurements of the mean photoionization rates are sensitive to the average density of the regions being studied and therefore could be strongly skewed in certain cases. Finally, the simulation volume employed has very modest effects on the results during the early and intermediate stages of reionization, but late-time signatures could be significantly affected.
  •  
23.
  • Iliev, Ilian T., et al. (author)
  • Current models of the observable consequences of cosmic reionization and their detectability
  • 2008
  • In: Monthly Notices of the Royal Astronomical Society. - : Blackwell Publishing. - 0035-8711 .- 1365-2966. ; 384:3, s. 863-874
  • Journal article (peer-reviewed)abstract
    • A number of large current experiments aim to detect the signatures of the cosmic reionization at redshifts z > 6. Their success depends crucially on understanding the character of the reionization process and its observable consequences and designing the best strategies to use. We use large-scale simulations of cosmic reionization to evaluate the reionization signatures at redshifted 21-cm and small-scale cosmic microwave background (CMB) anisotropies in the best current model for the background universe, with fundamental cosmological parameters given by Wilkinson Microwave Anisotropy Probe three-year results. We find that the optimal frequency range for observing the ‘global step’ of the 21-cm emission is 120–150 MHz, while statistical studies should aim at 140–160 MHz, observable by GMRT. Some strongly non-Gaussian brightness features should be detectable at frequencies up to ∼190 MHz. In terms of sensitivity-signal trade-off relatively low resolutions, corresponding to beams of at least a few arcminutes, are preferable. The CMB anisotropy signal from the kinetic Sunyaev–Zel'dovich effect from reionized patches peaks at tens of μK at arcminute scales and has an rms of ∼1 μK, and should be observable by the Atacama Cosmology Telescope and the South Pole Telescope. We discuss the various observational issues and the uncertainties involved, mostly related to the poorly known reionization parameters and, to a lesser extend, to the uncertainties in the background cosmology.
  •  
24.
  • Iliev, Ilian T., et al. (author)
  • kSZ from patchy reionization: The view from the simulations
  • 2006
  • In: New Astronomy Reviews. - : Elsevier BV. - 1387-6473. ; 50:11-12, s. 909-917
  • Journal article (peer-reviewed)abstract
    • We present the first calculation of the kinetic Sunyaev Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000 8000 with maximum values of [ℓ(ℓ + 1)Cℓ/(2π)]max ˜ 4 7 × 10^‑13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of ˜5 20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ ˜ 3000 ‑ 10^4, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.
  •  
25.
  • Iliev, Ilian T., et al. (author)
  • Reionization : characteristic scales, topology and observability
  • 2009
  • In: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 320:1-3, s. 39-43
  • Journal article (peer-reviewed)abstract
    • Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly- α sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.
  •  
26.
  • Iliev, Ilian T., et al. (author)
  • Self-Regulated Reionization
  • 2007
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 376:2, s. 534-548
  • Journal article (peer-reviewed)abstract
    • Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M > 109 Mo, in a comoving volume (100 h-1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 Mo, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 Mo, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self-regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 Mo. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur.
  •  
27.
  • Iliev, Ilian T., et al. (author)
  • Simulating cosmic reionization : how large a volume is large enough?
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 439:1, s. 725-743
  • Journal article (peer-reviewed)abstract
    • We present the largest-volume (425 Mpc h(-1) = 607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investigate the effects this additional power has on the progress, duration and features of reionization and on selected reionization observables. We find that comoving volume of similar to 100 Mpc h(-1) per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume. We find that sub-volumes of similar to 100 Mpc h(-1) per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of similar to 50 Mpc h(-1) or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, as high as Delta z similar to 1 for similar to 50 Mpc h(-1) volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Delta z similar to 0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all showgood convergence for volumes of similar to 200 Mpc h(-1), but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k < 0.25 h Mpc(-1)) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies.
  •  
28.
  • Iliev, Ilian T., et al. (author)
  • The effect of the intergalactic environment on the observability of Lyα emitters during reionization
  • 2008
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 391:1, s. 63-
  • Journal article (peer-reviewed)abstract
    • Observations of high-redshift Lyα sources are a major tool for studying the high-redshift universe and are one of the most promising ways to constrain the later stages of reionization. The understanding and interpretation of the data is far from straightforward, however. We discuss the effect of the reionizing intergalactic medium (IGM) on the observability of Lyα sources based on large simulations of early structure formation with radiative transfer. This takes into account self-consistently the reionization history, density, velocity and ionization structures and non-linear source clustering. We find that all fields are highly anisotropic and as a consequence there are very large variations in opacity among the different lines of sight. The velocity effects, from both infall and source peculiar velocity are most important for the luminous sources, affecting the line profile and depressing the bright end of the luminosity function. The line profiles are generally asymmetric and the line centres of the luminous sources are always absorbed due to the high density of the local IGM. For both luminous and average sources the damping wing effects are of similar magnitude and remain significant until fairly late, when the IGM is ionized between 30 and 70 per cent by mass.The ionizing flux in the ionized patch surrounding a high-density peak is generally strongly dominated, particularly at late times, by the cluster of faint sources, rather than the central massive galaxy. Our results reproduce well the observed mean opacity of the IGM at z ~ 6. The IGM absorption does not change appreciably the correlation function of sources at high redshift. Our derived luminosity function assuming constant mass-to-light ratio provides an excellent match to the shape of the observed luminosity function at z = 6.6 with faint-end slope of α = -1.5. The resulting mass-to-light ratio implies that the majority of sources responsible for reionization are too faint to be observed by the current surveys.Bibtex entry for this abstract Preferred format for this abstract
  •  
29.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-29 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view