SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vadineanu Angheluta) "

Search: WFRF:(Vadineanu Angheluta)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kløve, Bjørn, et al. (author)
  • Groundwater dependent ecosystems : Part I: Hydroecological status and trends
  • 2011
  • In: Environmental Science and Policy. - : Elsevier BV. - 1462-9011 .- 1873-6416. ; 14:7, s. 770-781
  • Journal article (peer-reviewed)abstract
    • Groundwater dependent ecosystems (GDEs) include valuable ecosystems such as springs, wetlands, rivers, lakes and lagoons. The protection of these systems and services they provide is highlighted by international agreements, i.e. Ramsar convention on wetlands, and regional legislation, i.e. the European Water Framework Directive. Groundwater provides water, nutrients and a relatively stable temperature. However, the role of groundwater in surface ecosystems is not fully understood. The ecosystem can depend on groundwater directly or indirectly, and the reliance can be continuous, seasonal or occasional. This has implications for the vulnerability of ecosystems, as some may be easily affected by external pressure. Conceptual models and quantitative assessments of how groundwater interacts with the environment are needed. GDEs are also threatened by different land use activities and climate change. Hence, we need to understand how GDEs are affected by changes in groundwater quantity and quality, as severe groundwater changes have been observed in many regions. This study examines key aspects of GDEs (hydrogeology, geochemistry and biodiversity) in order to improve conceptual understanding of the role of groundwater in such ecosystems. The status and baseline of different types of GDEs are discussed, with particular emphasis on past evidence of environmental change and potential thresholds and threats in GDEs in various parts of Europe with different land use, climate and geology
  •  
2.
  •  
3.
  • Rudbeck Jepsen, Martin, et al. (author)
  • Transitions in European land-management regimes between 1800 and 2010
  • 2015
  • In: Land use policy. - : Elsevier BV. - 0264-8377 .- 1873-5754. ; 49:SI, s. 53-64
  • Journal article (peer-reviewed)abstract
    • Land use is a cornerstone of human civilization, but also intrinsically linked to many global sustainability challenges—from climate change to food security to the ongoing biodiversity crisis. Understanding the underlying technological, institutional and economic drivers of land-use change, and how they play out in different environmental, socio-economic and cultural contexts, is therefore important for identifying effective policies to successfully address these challenges. In this regard, much can be learned from studying long-term land-use change. We examined the evolution of European land management over the past 200 years with the aim of identifying (1) key episodes of changes in land management, and (2) their underlying technological, institutional and economic drivers. To do so, we generated narratives elaborating on the drivers of land use-change at the country level for 28 countries in Europe. We qualitatively grouped drivers into land-management regimes, and compared changes in management regimes across Europe. Our results allowed discerning seven land-management regimes, and highlighted marked heterogeneity regarding the types of management regimes occurring in a particular country, the timing and prevalence of regimes, and the conditions that result in observed bifurcations. However, we also found strong similarities across countries in the timing of certain land-management regime shifts, often in relation to institutional reforms (e.g., changes in EU agrarian policies or the emergence and collapse of the Soviet land management paradigm) or to technological innovations (e.g., drainage pipes, tillage and harvesting machinery, motorization, and synthetic fertilizers). Land reforms frequently triggered changes in land management, and the location and timing of reforms had substantial impacts on land-use outcomes. Finally, forest protection policies and voluntary cooperatives were important drivers of land-management changes. Overall, our results demonstrate that land-system changes should not be conceived as unidirectional developments following predefined trajectories, but rather as path-dependent processes that may be affected by various drivers, including sudden events.
  •  
4.
  • Woodward, Guy, et al. (author)
  • Continental-scale effects of nutrient pollution on stream ecosystem functioning
  • 2012
  • In: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 336:6087, s. 1438-1440
  • Journal article (peer-reviewed)abstract
    • Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view