SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Valenti Jeff A.) "

Search: WFRF:(Valenti Jeff A.)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fischer, Debra A., et al. (author)
  • M2K. II. A Triple-Planet System Orbiting Hip 57274
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 21-
  • Journal article (peer-reviewed)abstract
    • Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with M sin i = 11.6 M-circle plus (0.036 M-Jup), an orbital period of 8.135 +/- 0.004 days, and slightly eccentric orbit e = 0.19 +/- 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has M sin i = 0.4 M-Jup with an orbital period of 32.0 +/- 0.02 days in a nearly circular orbit (e = 0.05 +/- 0.03). The third planet has M sin i = 0.53 M-Jup with an orbital period of 432 +/- 8 days (1.18 years) and an eccentricity e = 0.23 +/- 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M-circle plus that have been detected with Doppler surveys. We find that 56% +/- 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% +/- 8%, that are members of Doppler-detected, multi-planet systems.
  •  
2.
  • Brewer, John M., et al. (author)
  • Accurate Gravities of F, G, and K Stars from High Resolution Spectra Without External Constraints
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 805:2
  • Journal article (peer-reviewed)abstract
    • We demonstrate a new procedure to derive accurate and precise surface gravities from high resolution spectra without the use of external constraints. Our analysis utilizes Spectroscopy Made Easy with robust spectral line constraints and uses an iterative process to mitigate degeneracies in the fitting process. We adopt an updated radiative transfer code, a new treatment for neutral perturber broadening, a line list with multiple gravity constraints and separate fitting for global stellar properties and abundance determinations. To investigate the sources of temperature dependent trends in determining log g noted in previous studies, we obtained Keck HIRES spectra of 42 Kepler asteroseismic stars. In comparison to asteroseismically determined log g our spectroscopic analysis has a constant offset of 0.01 dex with a rms scatter of 0.05 dex. We also analyzed 30 spectra which had published surface gravities determined using the a/R-* technique from planetary transits and found a constant offset of 0.06 dex and rms scatter of 0.07 dex. The two samples covered effective temperatures between 5000 and 6700 K with log g between 3.7 and 4.6.
  •  
3.
  • Brewer, John M., et al. (author)
  • Spectral Properties Of Cool Stars : Extended Abundance Analysis Of 1,617 Planet-Search Stars
  • 2016
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 225:2
  • Journal article (peer-reviewed)abstract
    • We present a catalog of uniformly determined stellar properties and abundances for 1,617 F, G, and K stars using an automated spectral synthesis modeling procedure. All stars were observed using the HIRES spectrograph at Keck Observatory. Our procedure used a single line list to fit model spectra to observations of all stars to determine effective temperature, surface gravity, metallicity, projected rotational velocity, and the abundances of 15 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y). Sixty percent of the sample had Hipparcos parallaxes and V-band photometry, which we combined with the spectroscopic results to obtain mass, radius, and luminosity. Additionally, we used the luminosity, effective temperature, metallicity and alpha-element enhancement to interpolate in the Yonsei-Yale isochrones to derive mass, radius, gravity, and age ranges for those stars. Finally, we determined new relations between effective temperature and macroturbulence for dwarfs and subgiants. Our analysis achieved precisions of 25 K in T-eff, 0.01. dex in [M/H], 0.028. dex for log g,. and 0.5 km s(-1) in v sin i based on multiple observations of the same stars. The abundance results were similarly precise, between similar to 0.01 and similar to 0.04. dex, though trends with respect to T-eff remained for which we derived empirical corrections. The trends, though small, were much larger than our uncertainties and are shared with published abundances. We show that changing our model atmosphere grid accounts for most of the trend in [M/H] between 5000 and 5500 K, indicating a possible problem with the atmosphere models or opacities.
  •  
4.
  • Howard, Andrew W., et al. (author)
  • The California planet survey. I. four new giant exoplanets
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 721:2, s. 1467-1481
  • Journal article (peer-reviewed)abstract
    • We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M-Jup), orbital period (P = 2.87-11.5 yr), semimajor axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445 b (P = 2.87 yr, M sin i = 0.79 MJup, e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614 Ab, and an M dwarf, HD 126614 B, orbiting the metal-rich star HD 126614 (which we now refer to as HD 126614 A). The planet, HD 126614 Ab, has minimum mass M sin i = 0.38 MJup and orbits the stellar primary with period P = 3.41 yr and orbital separation a = 2.3 AU. The faint M dwarf companion, HD 126614 B, is separated from the stellar primary by 489 mas (33 AU) and was discovered with direct observations using adaptive optics and the PHARO camera at Palomar Observatory. The stellar primary in this new system, HD 126614 A, has the highest measured metallicity ([ Fe/ H] = + 0.56) of any known planet-bearing star. HD 13931 b (P = 11.5 yr, M sin i = 1.88 MJup, e = 0.02) is a Jupiter analog orbiting a near solar twin. Gl 179 b (P = 6.3 yr, M sin i = 0.82 M-Jup, e = 0.21) is a massive planet orbiting a faint M dwarf. The high metallicity of Gl 179 is consistent with the planet-metallicity correlation among M dwarfs, as documented recently by Johnson & Apps.
  •  
5.
  • Howard, Andrew W., et al. (author)
  • The NASA-UC Eia-earth program. II. a planet orbiting HD 156668 with a minimum mass of four earth masses
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 726:2, s. 73-
  • Journal article (peer-reviewed)abstract
    • We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M-P sin i = 4.15 M-circle plus. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s(-1), is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P approximate to 2.3 years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of similar to 3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.
  •  
6.
  • Howard, Andrew W., et al. (author)
  • THE NASA-UC ETA-EARTH PROGRAM : I. A SUPER-EARTH ORBITING HD 7924
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 696:1, s. 75-83
  • Journal article (peer-reviewed)abstract
    • We report the discovery of the first low-mass planet to emerge from the NASA-UC Eta-Earth Program, a super-Earth orbiting the K0 dwarf HD 7924. Keplerian modeling of precise Doppler radial velocities reveals a planet with minimum mass M-P sin i = 9.26M(circle plus) in a P = 5.398 d orbit. Based on Keck-HIRES measurements from 2001 to 2008, the planet is robustly detected with an estimated false alarm probability of less than 0.001. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 7924 is photometrically constant over the radial velocity period to 0.19 mmag, supporting the existence of the planetary companion. No transits were detected down to a photometric limit of similar to 0.5 mmag, eliminating transiting planets with a variety of compositions. HD 7924b is one of only eight planets detected by the radial velocity technique with M-P sini < 10 M-circle plus and as such is a member of an emerging family of low-mass planets that together constrain theories of planet formation.
  •  
7.
  • Howard, Andrew W., et al. (author)
  • THE NASA-UC ETA-EARTH PROGRAM. III. A SUPER-EARTH ORBITING HD 97658 AND A NEPTUNE-MASS PLANET ORBITING G1 785
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 730:1, s. 10-
  • Journal article (peer-reviewed)abstract
    • We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and G1 785. These planets were detected by Keplerian modeling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass M sin i = 8.2 +/- 1.2 M-circle plus, orbital period P = 9.494 +/- 0.005 days, and an orbit that is consistent with circular. G1 785 b is a Neptune-mass planet with M sin i = 21.6 +/- 2.0 M-circle plus, P = 74.39 +/- 0.12 days, and orbital eccentricity e = 0.30 +/- 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.
  •  
8.
  • Johns-Krull, Christopher M., et al. (author)
  • Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TW Hydrae
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 11-
  • Journal article (peer-reviewed)abstract
    • We present high spectral resolution (R approximate to 108,000) Stokes V polarimetry of the classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the He I emission lines at 5876 angstrom and 6678 angstrom. The He I lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large-scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two He I emission lines in both stars. We observe a maximum implied field strength of 6.05 +/- 0.24 kG in the 5876 angstrom line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two He I lines that are consistent with each other, in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the broad component of the He I lines on these stars, strengthening the conclusion that they form over a substantially different volume relative to the formation region of the narrow component of the He I lines.
  •  
9.
  • Makaganiuk, Vitalii, et al. (author)
  • The search for magnetic fields in mercury-manganese stars
  • 2011
  • In: Active OB stars. - 9780521198400 ; , s. 202-203
  • Conference paper (peer-reviewed)abstract
    • Mercury-manganese (HgMn) stars were considered to be non-magnetic, showing no evidence of surface spots. However, recent investigations revealed that some stars in this class possess an inhomogeneous distribution of chemical elements on their surfaces. According to our current understanding, the most probable mechanism of spot formation involves magnetic fields. Taking the advantage of a newly-built polarimeter attached to the HARPS spectrometer at the ESO 3.6m-telescope, we performed a high-precision spectropolarimetric survey of a large group of HgMn stars. The main purpose of this study was to find out how typical it is for HgMn stars to have weak magnetic fields. We report no magnetic field detection for any of the studied objects, with a typical precision of the longitudinal field measurements of 10 G and down to 1 Gauss for some of the stars. We conclude that HgMn stars lack large-scale magnetic fields typical of spotted magnetic Ap stars and probably lack any fields capable of creating and sustaining chemical spots. Our study confirms that alongside the magnetically altered atomic diffusion, there must be other structure formation mechanism operating in the atmospheres of late-B main sequence stars.
  •  
10.
  • Makaganiuk, Vitalii, et al. (author)
  • The search for magnetic fields in mercury-manganese stars
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 525, s. A97-
  • Journal article (peer-reviewed)abstract
    • Context. A subclass of the upper main-sequence chemically peculiar stars, mercury-manganese (HgMn) stars were traditionally considered to be non-magnetic, showing no evidence of variability in their spectral line profiles. However, discoveries of chemical inhomogeneities on their surfaces imply that this assumption should be investigated. In particular, spectroscopic time-series of AR Aur, a And, and five other HgMn stars indicate the presence of chemical spots. At the same time, no signatures of global magnetic fields have been detected. Aims. We attempt to understand the physical mechanism that causes the formation of chemical spots in HgMn stars and gain insight into the potential magnetic field properties at their surfaces; we performed a highly sensitive search for magnetic fields for a large set of HgMn stars. Methods. With the aid of a new polarimeter attached to the HARPS spectrometer at the ESO 3.6 m-telescope, we obtained high-quality circular polarization spectra of 41 single and double HgMn stars. Using a multi-line analysis technique on each star, we co-added information from hundreds of spectral lines to ensure significantly greater sensitivity to the presence of magnetic fields, including very weak fields. Results. For the 47 individual objects studied, including six components of SB2 systems, we do not detect any magnetic fields at greater than the 3 sigma level. The lack of detection in the circular polarization profiles indicates that if strong fields are present on these stars, they must have complex surface topologies. For simple global fields, our detection limits imply upper limits to the fields present of 2-10 Gauss in the best cases. Conclusions. We conclude that HgMn stars lack large-scale magnetic fields, which is typical of spotted magnetic Ap stars, of sufficient strength to form and sustain the chemical spots observed on HgMn stars. Our study confirms that in addition to magnetically altered atomic diffusion, there exists another differentiation mechanism operating in the atmospheres of late-B main sequence stars that can produce compositional inhomogeneities on their surfaces.
  •  
11.
  • Piskunov, Nikolai, et al. (author)
  • Spectroscopy Made Easy : Evolution
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • Context. The Spectroscopy Made Easy (SME) package has become a popular tool for analyzing stellar spectra, often in connection with large surveys or exoplanet research. SME has evolved significantly since it was first described in 1996, but many of the original caveats and potholes still haunt users. The main drivers for this paper are complexity of the modeling task, the large user community, and the massive effort that has gone into SME.Aims. We do not intend to give a comprehensive introduction to stellar atmospheres, but will describe changes to key components of SME: the equation of state, opacities, and radiative transfer. We will describe the analysis and fitting procedure and investigate various error sources that affect inferred parameters.Methods. We review the current status of SME, emphasizing new algorithms and methods. We describe some best practices for using the package, based on lessons learned over two decades of SME usage. We present a new way to assess uncertainties in derived stellar parameters.Results. Improvements made to SME, better line data, and new model atmospheres yield more realistic stellar spectra, but in many cases systematic errors still dominate over measurement uncertainty. Future enhancements are outlined.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view