SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Valimaki S) "

Search: WFRF:(Valimaki S)

  • Result 1-32 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Sliz, E., et al. (author)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
3.
  • Tanskanen, T., et al. (author)
  • Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci
  • 2018
  • In: International Journal of Cancer. - Stockholm : Wiley. - 0020-7136 .- 1097-0215. ; 142:3, s. 540-546
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p=2.08 x 10(-4); OR, 1.14; 95% CI, 1.06-1.23), and it was genome-wide significant in combined analysis (p=1.50 x 10(-9); OR, 1.12; 95% CI, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery rate<0.1), but new risk loci were not found. These results replicate the effects of multiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.
  •  
4.
  •  
5.
  • Pellinen, T, et al. (author)
  • ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer
  • 2018
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 2338-
  • Journal article (peer-reviewed)abstract
    • Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.
  •  
6.
  •  
7.
  • Forsberg, L, et al. (author)
  • Homozygous inactivation of the MEN1 gene as a specific somatic event in a case of secondary hyperparathyroidism
  • 2001
  • In: European journal of endocrinology. - : Oxford University Press (OUP). - 0804-4643 .- 1479-683X. ; 145:4, s. 415-420
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Most patients who have been surgically treated for secondary hyperparathyroidism (HPT) harbor at least one pathological parathyroid gland with a tumor of monoclonal origin. OBJECTIVE: To elucidate the underlying genetic mechanisms behind secondary HPT, by studying a panel of such tumors for numerical alterations. METHODS: Sixteen parathyroid glands from eight patients (median age 58 years, range 31-74 years), were screened for numerical chromosomal imbalances, using comparative genomic hybridization (CGH). Mutation analysis of the multiple endocrine neoplasia type 1 gene (MEN1) was also performed by sequencing of the coding region. RESULTS: The results show that gross chromosomal alterations occur rarely in secondary HPT. In one of the three glands analyzed from one patient, a complete loss of chromosome 11 was detected. This gland also had an inactivating nonsense mutation, E469X, of the MEN1 gene. The mutation was present neither in the other two glands, nor in the constitutional tissue of the same patient, thus confirming its somatic origin. CONCLUSIONS: The relative lack of numerical chromosomal alterations would suggest that more discrete genetic alterations are responsible for the monoclonal growth in the majority of cases of secondary HPT. Furthermore, somatic inactivation of the MEN1 tumor suppressor gene contributes to the tumorigenesis in a small proportion of the cases.
  •  
8.
  • Fratzl-Zelman, N., et al. (author)
  • Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations
  • 2021
  • In: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 146
  • Journal article (peer-reviewed)abstract
    • Context: Patients with osteoporosis-associated WNT1 or PLS3 mutations have unique bone histomorphometric features and osteocyte-specific hormone expression patterns. Objective: To investigate the effects of WNT1 and PLS3 mutations on bone material properties. Design: Transiliac bone biopsies were evaluated by quantitative backscattered electron imaging, immunohistochemistry, and bone histomorphometry. Setting: Ambulatory patients. Patients: Three pediatric and eight adult patients with WNT1 or PLS3 mutations. Intervention: Bone mineralization density distribution and osteocyte protein expression was evaluated in 11 patients and repeated in six patients who underwent repeat biopsy after 24 months of teriparatide treatment. Main outcome measure: Bone mineralization density distribution and protein expression. Results: Children with WNT1 or PLS3 mutations had heterogeneous bone matrix mineralization, consistent with bone modeling during growth. Bone matrix mineralization was homogenous in adults and increased throughout the age spectrum. Teriparatide had very little effect on matrix mineralization or bone formation in patients with WNT1 or PLS3 mutations. However, teriparatide decreased trabecular osteocyte lacunae size and increased trabecular bone FGF23 expression. Conclusion: The contrast between preserved bone formation with heterogeneous mineralization in children and low bone turnover with homogenous bone mineral content in adults suggests that WNT1 and PLS3 have differential effects on bone modeling and remodeling. The lack of change in matrix mineralization in response to teriparatide, despite clear changes in osteocyte lacunae size and protein expression, suggests that altered WNT1 and PLS3 expression may interfere with coupling of osteocyte, osteoblast, and osteoclast function. Further studies are warranted to determine the mechanism of these changes.
  •  
9.
  •  
10.
  •  
11.
  • Kuisma, H, et al. (author)
  • Parity associates with chromosomal damage in uterine leiomyomas
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 5448-
  • Journal article (peer-reviewed)abstract
    • Mechanical forces in a constrained cellular environment were recently established as a facilitator of chromosomal damage. Whether this could contribute to tumorigenesis is not known. Uterine leiomyomas are common neoplasms that display relatively few chromosomal aberrations. We hypothesized that if mechanical forces contribute to chromosomal damage, signs of this could be seen in uterine leiomyomas from parous women. We examined the karyotypes of 1946 tumors, and found a striking overrepresentation of chromosomal damage associated with parity. We then subjected myometrial cells to physiological forces similar to those encountered during pregnancy, and found this to cause DNA breaks and a DNA repair response. While mechanical forces acting in constrained cellular environments may thus contribute to neoplastic degeneration, and genesis of uterine leiomyoma, further studies are needed to prove possible causality of the observed association. No evidence for progression to malignancy was found.
  •  
12.
  • Laakso, S, et al. (author)
  • Bone Tissue Evaluation Indicates Abnormal Mineralization in Patients with Autoimmune Polyendocrine Syndrome Type I: Report on Three Cases
  • 2023
  • In: Calcified tissue international. - : Springer Science and Business Media LLC. - 1432-0827. ; 112:6, s. 675-682
  • Journal article (peer-reviewed)abstract
    • Autoimmune polyendocrine syndrome type-1 (APS1) is characterized by autoimmune manifestations affecting different organs from early childhood on. Immunological abnormalities, the resulting endocrinopathies, and their treatments may compromise bone health. For the first time in APS1, we analyzed transiliac bone biopsy samples by bone histomorphometry and quantitative backscattered electron imaging in three adult patients (female P1, 38 years; male P2, 47 years; male P3, 25 years). All had biallelic mutations in the autoimmune regulator gene and in addition to endocrinopathies, also significant bone fragility. Histomorphometry showed bone volume in the lower normal range for P1 (BV/TV, − 0.98 SD) and P3 (− 1.34 SD), mainly due to reduced trabecular thickness (TbTh, − 3.63 and − 2.87 SD). In P1, osteoid surface was low (OS/BS, − 0.96 SD); active osteoblasts and double labeling were seen only on cortical bone. P3 showed a largely increased bone turnover rate (BFR/BV, + 4.53 SD) and increased mineralization lag time (Mlt, + 3.40 SD). Increased osteoid surface (OS/BS, + 2.03 and + 4.71 SD for P2 and P3) together with a large proportion of lowly mineralized bone area (Trab CaLow, + 2.22 and + 9.81 SD for P2 and P3) and focal mineralization defects were consistent with abnormal mineralization. In all patients, the density and area of osteocyte lacunae in cortical and trabecular bone were similar to healthy adults. The bone tissue characteristics were variable and included decreased trabecular thickness, increased amount of osteoid, and abnormal mineralization which are likely to contribute to bone fragility in patients with APS1.
  •  
13.
  • Laine, Christine M., et al. (author)
  • A Novel Splice Mutation in PLS3 Causes X-linked Early Onset Low-Turnover Osteoporosis
  • 2015
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 30:3, s. 437-445
  • Journal article (peer-reviewed)abstract
    • Genetic factors play an important role in the development of osteoporosis. Several monogenic forms of osteoporosis have been recognized, most recently an X-chromosomal form resulting from mutations in the gene encoding plastin 3 (PLS3). PLS3 is a protein involved in actin bundle formation in the cytoskeleton. We present a large family with early onset osteoporosis and X-linked inheritance. Phenotyping was performed on 19 family members and whole-exome sequencing on 7 family members (5 with a diagnosis of early onset osteoporosis and 2 with normal bone parameters). Osteoporosis had its onset in childhood and was characterized by recurrent peripheral fractures, low bone mineral density (BMD), vertebral compression fractures, and significant height loss in adulthood. Males were in general more severely affected than females. Bone histomorphometry findings in 4 males and 1 female showed severe trabecular osteoporosis, low amount of osteoid, and decreased mineral apposition rate, indicating impaired bone formation; resorption parameters were increased in some. All affected subjects shared a single base substitution (c.73-24T>A) in intron 2 of PLS3 on Xq23. The mutation, confirmed by Sanger sequencing, segregated according to the skeletal phenotype. The mutation introduces a new acceptor splice site with a predicted splice score of 0.99 and, thereby, as confirmed by cDNA sequencing, induces the insertion of 22 bases between exons 2 and 3, causing a frameshift and premature termination of mRNA translation (p.Asp25Alafs(not asymptotic to)17). The mutation affects the first N-terminal calcium-binding EF-hand domain and abolishes all calcium-and actinbinding domains of the protein. Our results confirm the role of PLS3 mutations in early onset osteoporosis. The mechanism whereby PLS3 affects bone health is unclear, but it may be linked to osteocyte dendrite function and skeletal mechanosensing. Future studies are needed to elucidate the role of PLS3 in osteoporosis and to define optimal treatment. (C) 2014 American Society for Bone and Mineral Research.
  •  
14.
  • Palin, K, et al. (author)
  • Contribution of allelic imbalance to colorectal cancer
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 3664-
  • Journal article (peer-reviewed)abstract
    • Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.
  •  
15.
  •  
16.
  •  
17.
  • Blom, S, et al. (author)
  • Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis
  • 2017
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 15580-
  • Journal article (peer-reviewed)abstract
    • The paradigm of molecular histopathology is shifting from a single-marker immunohistochemistry towards multiplexed detection of markers to better understand the complex pathological processes. However, there are no systems allowing multiplexed IHC (mIHC) with high-resolution whole-slide tissue imaging and analysis, yet providing feasible throughput for routine use. We present an mIHC platform combining fluorescent and chromogenic staining with automated whole-slide imaging and integrated whole-slide image analysis, enabling simultaneous detection of six protein markers and nuclei, and automatic quantification and classification of hundreds of thousands of cells in situ in formalin-fixed paraffin-embedded tissues. In the first proof-of-concept, we detected immune cells at cell-level resolution (n = 128,894 cells) in human prostate cancer, and analysed T cell subpopulations in different tumour compartments (epithelium vs. stroma). In the second proof-of-concept, we demonstrated an automatic classification of epithelial cell populations (n = 83,558) and glands (benign vs. cancer) in prostate cancer with simultaneous analysis of androgen receptor (AR) and alpha-methylacyl-CoA (AMACR) expression at cell-level resolution. We conclude that the open-source combination of 8-plex mIHC detection, whole-slide image acquisition and analysis provides a robust tool allowing quantitative, spatially resolved whole-slide tissue cytometry directly in formalin-fixed human tumour tissues for improved characterization of histology and the tumour microenvironment.
  •  
18.
  •  
19.
  • Cajuso, T, et al. (author)
  • Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4022-
  • Journal article (peer-reviewed)abstract
    • Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retrotransposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initiating events. Insertions are positively associated with the CpG island methylator phenotype and the genomic fraction of allelic imbalance. Clinically, high number of insertions is independently associated with poor disease-specific survival.
  •  
20.
  •  
21.
  •  
22.
  • Murumagi, A, et al. (author)
  • Drug response profiles in patient-derived cancer cells across histological subtypes of ovarian cancer: real-time therapy tailoring for a patient with low-grade serous carcinoma
  • 2023
  • In: British journal of cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 128:4, s. 678-690
  • Journal article (peer-reviewed)abstract
    • Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles, with LGSOCs responding better to targeted inhibitors than HGSOCs. We identified several subtype-specific drug responses, such as LGSOC PDCs showing high sensitivity to MDM2, ERBB2/EGFR inhibitors, MUCOC PDCs to MEK inhibitors, whereas HGSOCs showed strongest effects with CHK1 inhibitors and SMAC mimetics. We also explored several drug combinations and found that the dual inhibition of MEK and SHP2 was synergistic in MAPK-driven EOCs. We describe a clinical case study, where real-time fPO analysis of samples from a patient with metastatic, chemorefractory LGSOC with a CLU-NRG1 fusion guided clinical therapy selection. fPO-tailored therapy with afatinib, followed by trastuzumab and pertuzumab, successfully reduced tumour burden and blocked disease progression over a five-year period. In summary, fPO is a powerful approach for the identification of systematic drug response differences across EOC subtypes, as well as to highlight patient-specific drug regimens that could help to optimise therapies to individual patients in the future.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-32 of 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view