SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vardelle Armelle) "

Search: WFRF:(Vardelle Armelle)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chazelas, Christophe, et al. (author)
  • Main issues for a fully predictive plasma spray torch model and numerical considerations
  • 2017
  • In: Plasma chemistry and plasma processing. - : Springer Science and Business Media LLC. - 0272-4324 .- 1572-8986. ; 37:3, s. 627-651
  • Journal article (peer-reviewed)abstract
    • Plasma spray is one of the most versatile and established techniques for the deposition of thick coatings that provide functional surfaces to protect or improve the performance of the substrate material. However, a greater understanding of plasma spray torch operation will result in improved control of process and coating properties and in the development of novel plasma spray processes and applications. The operation of plasma torches is controlled by coupled dynamic, thermal, chemical, electromagnetic, and acoustic phenomena that take place at different time and space scales. Computational modeling makes it possible to gain important insight into torch characteristics that are not practically accessible to experimental observations, such as the dynamics of the arc inside the plasma torch. This article describes the current main issues in carrying out plasma spray torch numerical simulations at a high level of fidelity. These issues encompass the use of non-chemical and non-thermodynamic equilibrium models, incorporation of electrodes with sheath models in the computational domain, and resolution of rapid transient events, including the so-called arc reattachment process. Practical considerations regarding model implementation are also discussed, particularly the need for the model to naturally reproduce the observed torch operation modes in terms of voltage and pressure fluctuations.
  •  
2.
  • Javidi Shirvan, Alireza (author)
  • Modelling of cathode-plasma interaction in short high-intensity electric arc : Application to Gas Tungsten Arc Welding
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • In arc welding the quality of the weld is strongly influenced by the thermal history of the workpiece which is itself governed by the electric arc heat source. The models for predicting weld properties thus need a good evaluation of the distribution of the heat input from thearc to the workpiece. To have a predictive model of arc heat source it is necessary to take into account the cathode and its coupling with the plasma. The coupling allows to calculate the temperature and current density distributions along the cathode surface rather than prescribing them. This thesis focuses on the arc-cathode coupling for a plasma assumed to be in local thermal equilibrium. A self-consistent coupling boundary model for high-intensity electric arc on a refractory cathode (thoriated tungsten) was developed accounting for the physics of the sub-layers of the cathode layer and the non-uniformity of the cathode surface physical state. The cathode layer model accounts for the non-equilibria in the cathode layer. It was tested in one-dimensional calculations and then extended to a cathode-plasma coupling boundary condition for gas tungsten arc implemented in OpenFOAM. Different modelling assumptions commonly used for developing the model were questioned and investigated. It was checked that the secondary electron emission is negligible compared to the effect of emitted electrons and ions. It was verified that it is justified to neglect the space charge of emitted electron when calculating the cathode surface electric field. It was verified that Richardson-Dushman electron emission law supplemented with Schottky correction is used within its domain of validity in GTA applications even for low work function emitters. It was shown that the radiative absorption of the cathode surface is not negligible compared to the radiative emission. The cathode layer model was also further developed to take into account the in homogeneity of the cathode material. It was shown that the cathode in homogeneityhas a significant effect on the size of the arc attachment and consequently on the cathode surface and the plasma temperature. Good agreement was obtained with the measured cathode surface and plasma temperatures without imposing any adjustable parameters. The results showed that the proposed model, which is only based on physical principles, is ableto predict the trends observed experimentally.
  •  
3.
  • Vardelle, Armelle, et al. (author)
  • Erratum to The 2016 Thermal Spray Roadmap
  • 2017
  • In: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 26:5, s. 985-986
  • Journal article (peer-reviewed)
  •  
4.
  • Vardelle, Armelle, et al. (author)
  • The 2016 Thermal Spray Roadmap
  • 2016
  • In: Journal of thermal spray technology (Print). - : Springer Science and Business Media LLC. - 1059-9630 .- 1544-1016. ; 25:8, s. 1376-1440
  • Journal article (peer-reviewed)abstract
    • Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications. © 2016, ASM International.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view