SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Varje J.) "

Search: WFRF:(Varje J.)

  • Result 1-50 of 52
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
2.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
3.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
30.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Journal article (peer-reviewed)
  •  
31.
  • Labit, B., et al. (author)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Journal article (peer-reviewed)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
32.
  • Creely, A. J., et al. (author)
  • Overview of the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
  •  
33.
  • Kazakov, Ye O., et al. (author)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Research review (peer-reviewed)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
34.
  •  
35.
  • Nocente, M., et al. (author)
  • Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D-He-3 plasmas with the 3-ion radio-frequency heating scenario
  • 2020
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:12
  • Journal article (peer-reviewed)abstract
    • Dedicated experiments to generate energetic D ions and D-(3) He fusion-born alpha particles were performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Using the 3-ion D-(D-NBI)-(3) He radio frequency (RF) heating scenario, deuterium ions from neutral beam injection (NBI) were accelerated in the core of mixed D-(3) He plasmas to higher energies with ion cyclotron resonance frequency (ICRF) waves, in turn leading to a core-localized source of alpha particles. The fast-ion distribution of RF-accelerated D-NBI ions was controlled by varying the ICRF and NBI power (P-ICRF approximate to 4-6 MW, P-NBI approximate to 3-20 MW), resulting in rather high D-D neutron (approximate to 1x10(16) s(-1)) and D-(3) He alpha rates (approximate to 2x10(16) s(-1)) at moderate input heating power. Theory and TRANSP analysis shows that large populations of co-passing MeV-range D ions were generated using the D-(D-NBI)-(3) He 3-ion ICRF scenario. This important result is corroborated by several experimental observations, in particular gamma-ray measurements. The developed experimental scenario at JET provides unique conditions for probing several aspects of future burning plasmas, such as the contribution from MeV range ions to global confinement, but without introducing tritium. Dominant fast-ion core electron heating with T-i approximate to T-e and a rich variety of fast-ion driven Alfven eigenmodes (AEs) were observed in these D-(3) He plasmas. The observed AE activities do not have a detrimental effect on the thermal confinement and, in some cases, may be driven by the fusion born alpha particles. A strong continuous increase in neutron rate was observed during long-period sawteeth (>1 s), accompanied by the observation of reversed shear AEs, which implies that a non monotonic q profile was systematically developed in these plasmas, sustained by the large fast-ion populations generated by the 3-ion ICRF scenario.
  •  
36.
  • Kazakov, Ye. O., et al. (author)
  • Plasma heating and generation of energetic D ions with the 3-ion ICRF + NBI scenario in mixed H-D plasmas at JET-ILW
  • 2020
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:11
  • Journal article (peer-reviewed)abstract
    • Dedicated experiments were conducted in mixed H-D plasmas in JET to demonstrate the efficiency of the 3-ion ICRF scenario for plasma heating, relying on injected fast NBI ions as the resonant ion component. Strong core localization of the RF power deposition in the close vicinity of the ion-ion hybrid layer was achieved, resulting in an efficient plasma heating, generation of energetic D ions, strong enhancement of the neutron rate and observation of Alfvenic modes. A consistent physical picture that emerged from a range of fast-ion measurements at JET, including neutron and gamma-ray measurements, a high-energy neutral particle analyzer and MHD mode localization analysis, is presented. The possibility to moderate the fast-ion energies with the ratioP(ICRF)/P(NBI)and the choice of the NBI injectors is demonstrated. An outlook of possible applications of the 3-ion scenarios, including a recent example of its use in mixed D-He-3 plasmas in JET and promising scenarios for D-T plasmas, are presented.
  •  
37.
  •  
38.
  • Scott, S. D., et al. (author)
  • Fast-ion physics in SPARC
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • Potential loss of energetic ions including alphas and radio-frequency tail ions due to classical orbit effects and magnetohydrodynamic instabilities (MHD) are central physics issues in the design and experimental physics programme of the SPARC tokamak. The expected loss of fusion alpha power due to ripple-induced transport is computed for the SPARC tokamak design by the ASCOT and SPIRAL orbit-simulation codes, to assess the expected surface heating of plasma-facing components. We find good agreement between the ASCOT and SPIRAL simulation results not only in integrated quantities (fraction of alpha power loss) but also in the spatial, temporal and pitch-angle dependence of the losses. If the toroidal field (TF) coils are well-aligned, the SPARC edge ripple is small (0.15-0.30 %), the computed ripple-induced alpha power loss is small (similar to 0.25%) and the corresponding peak surface power density is acceptable (244 kW m(-2)). However, the ripple and ripple-induced losses increase strongly if the TF coils are assumed to suffer increasing magnitudes of misalignment. Surface heat loads may become problematic if the TF coil misalignment approaches the centimetre level. Ripple-induced losses of the energetic ion tail driven by ion cyclotron range of frequency (ICRF) heating are not expected to generate significant wall or limiter heating in the nominal SPARC plasma scenario. Because the expected classical fast-ion losses are small, SPARC will be able to observe and study fast-ion redistribution due to MHD including sawteeth and Alfven eigenmodes (AEs). SPARC's parameter space for AE physics even at moderate Q is shown to reasonably overlap that of the demonstration power plant ARC (Sorbom et al., Fusion Engng Des., vol. 100, 2015, p. 378), and thus measurements of AE mode amplitude, spectrum and associated fast-ion transport in SPARC would provide relevant guidance about AE behaviour expected in ARC.
  •  
39.
  •  
40.
  • Weisen, H., et al. (author)
  • Isotope dependence of energy, momentum and particle confinement in tokamaks
  • 2020
  • In: Journal of Plasma Physics. - : Cambridge University Press. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • The isotope dependence of plasma transport will have a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analyses were performed in H, D and H-D mixed plasmas. The analysis of the data has demonstrated an unexpectedly strong and favourable dependence of the global confinement of energy, momentum and particles in ELMy H-mode plasmas on the atomic mass of the main ion species, the energy confinement time scaling as tau(E) similar to A(0.5) (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045; JET Team, Nucl. Fusion, vol. 39, 1999, pp. 1227-1244), i.e. opposite to the expectations based only on local gyro-Bohm (GB) scaling, tau(E) similar to A(-0.5), and stronger than in the commonly used H-mode scaling for the energy confinement (Saibene et al., Nucl. Fusion, vol. 39, 1999, 1133; ITER Physics Basis, Nucl. Fusion, vol. 39, 1999, 2175). The scaling of momentum transport and particle confinement with isotope mass is very similar to that of energy transport. Nonlinear local GENE gyrokinetic analysis shows that the observed anti-GB heat flux is accounted for if collisions, ExB shear and plasma dilution with low-Z impurities (Be-9) are included in the analysis (E and B are, respectively the electric and magnetic fields). For L-mode plasmas a weaker positive isotope scaling tau(E) similar to A(0.14) has been found in JET (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045), similar to ITER97-L scaling (Kaye et al., Nucl. Fusion, vol. 37, 1997, 1303). Flux-driven quasi-linear gyrofluid calculations using JETTO-TGLF in L-mode show that local GB scaling is not followed when stiff transport (as is generally the case for ion temperature gradient modes) is combined with an imposed boundary condition taken from the experiment, in this case predicting no isotope dependence. A dimensionless identity plasma pair in hydrogen and deuterium L-mode plasmas has demonstrated scale invariance, confirming that core transport physics is governed, as expected, by the 4 dimensionless parameters rho*, nu*, beta, q (normalised ion Larmor radius, collisionality, plasma pressure and safety factor) consistently with global quasi-linear gyrokinetic TGLF calculations (Maggi et al., Nucl. Fusion, vol. 59, 2019, 076028). We compare findings in JET with those in different devices and discuss the possible reasons for the different isotope scalings reported from different devices. The diversity of observations suggests that the differences may result not only from differences affecting the core, e.g. heating schemes, but are to a large part due to differences in device-specific edge and wall conditions, pointing to the importance of better understanding and controlling pedestal and edge processes.
  •  
41.
  • Hirvijoki, Eero, 1985, et al. (author)
  • Monte Carlo method and High Performance Computing for solving Fokker–Planck equation of minority plasma particles
  • 2015
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 81:3, s. Art. no. 435810301 -
  • Journal article (peer-reviewed)abstract
    • This paper explains how to obtain the distribution function of minority ions in tokamak plasmas using the Monte Carlo method. Since the emphasis is on energetic ions, the guiding-center transformation is outlined, including also the transformation of the collision operator. Even within the guiding-center formalism, the fast particle simulations can still be very CPU intensive and, therefore, we introduce the reader also to the world of high-performance computing. The paper is concluded with a few examples where the presented method has been applied.
  •  
42.
  • Huynh, P., et al. (author)
  • Modeling ICRH and ICRH-NBI Synergy in High Power JET Scenarios Using European Transport Simulator (ETS)
  • 2020
  • In: 23rd topical conference on radiofrequency power in plasmas. - : AIP Publishing.
  • Conference paper (peer-reviewed)abstract
    • The European Integrated Modelling effort (EU-IM) provides the European Transport Simulator (ETS) [1] which was designed to simulate arbitrary tokamak plasma discharges. Two new 1D Fokker-Planck solvers have recently been implemented within ETS: StixRedist [3] and FoPla [4]. To ensure the CPU time remains acceptable, the latter was parallelized with a generic and easy to implement method. In this paper, it will be shown how these modules were integrated in the ETS workflow in particular a first approach adopted to reach a consistency between wave and Fokker-Planck equation resolution. Also, the Verification and Validation efforts will be discussed. JET shots were analyzed and the ETS predictions were cross-checked against earlier validated codes external to the EU-IM effort, TRANSP [5] in particular, as well as against experimental neutron yield data. A good agreement was obtained, both when comparing the predictions with other codes for cases within their reach (minority or beam populations) and with experimental neutron yield data. Simulations illustrating the exploitation of the nonlinear collision operator when solving a set of coupled Fokker-Planck equations for cases when majority species play a key role will be also shown.
  •  
43.
  • Kirov, K. K., et al. (author)
  • Synergistic ICRH and NBI Heating for Fast Ion Generation and Maximising Fusion Rate in Mixed Plasmas at JET
  • 2020
  • In: 23rd topical conference on radiofrequency power in plasmas. - : AIP Publishing. - 9780735420137
  • Conference paper (peer-reviewed)abstract
    • The studies of recent JET experiments in H/D approximate to 0.85/0.15 plasma (2.9T/2MA) in which neutron rate was enhanced by applying 2.5MW of ICRH using D-(D-NBI)-H three-ion scheme are reported. An extensive analysis of this novel heating scenario has been carried out by means of integrated TRANSP/TORIC modelling, and a comprehensive validation of the computed Fast Ion Distribution Function (FI DF) with a range of fast ion diagnostics available at JET is presented. The predicted acceleration of D Neutral Beam Injection (NBI) ions beyond their injection energies and the associated changes in FI DF by RF waves are found to be in good agreement with measured neutron yield and TOFOR neutron spectrometer measurements, as well as with multi-channel neutron camera observations and neutral particle analyser diagnostic. An outlook of the possible applications of the developed technique for future DTE2 studies on JET has been highlighted. Controlled acceleration of TNBI ions in D-rich and DNBI ions in T-rich plasmas to optimal energies can be applied to maximise BT fusion rates and contribute to the success of future DT experiments at JET and ITER as illustrated in this study.
  •  
44.
  • Kurki-Suonio, Taina, 1959, et al. (author)
  • Protecting ITER walls: fast ion power loads in 3D magnetic field
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:1
  • Journal article (peer-reviewed)abstract
    • The fusion alpha and beam ion with steady-state power loads in all four main operating scenarios of ITER have been evaluated by the ASCOT code. For this purpose, high-fidelity magnetic backgrounds were reconstructed, taking into account even the internal structure of the ferritic inserts and tritium breeding modules (TBM). The beam ions were found to be almost perfectly confined in all scenarios, and only the so-called hybrid scenario featured alpha loads reaching 0.5 MW due to its more triangular plasma. The TBMs were not found to jeopardize the alpha confinement, nor cause any hot spots. Including plasma response did not bring dramatic changes to the load. The ELM control coils (ECC) were simulated in the baseline scenario and found to seriously deteriorate even the beam confinement. However, the edge perturbation in this case is so large that the sources have to be re-evaluated with plasma profiles that take into account the ECC perturbation.
  •  
45.
  • Sarkimaki, K., et al. (author)
  • An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields
  • 2016
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:12
  • Journal article (peer-reviewed)abstract
    • Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.
  •  
46.
  • Kurki-Suonio, Taina, 1959, et al. (author)
  • Effect of the European design of TBMs on ITER wall loads due to fast ions in the baseline (15 MA), hybrid (12.5 MA), steady-state (9 MA) and half-field (7.5 MA) scenarios
  • 2016
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:11
  • Journal article (peer-reviewed)abstract
    • We assess the effect of the European design of the pebble-bed helium-cooled test blanket modules (TBM) on fast ion power loads on ITER material surfaces. For this purpose, the effect of not only the TBMs but also the ferritic inserts (FI), used for mitigating the toroidal field ripple, were included in unprecedented detail in the reconstruction of the 3-dimensional magnetic field. This is important because, due to their low collisionality, fast ions follow the magnetic geometry much more faithfully than the thermal plasma. The Monte Carlo orbit-following code ASCOT was used to simulate all the foreseen operating scenarios of ITER: the baseline 15 MA standard H-mode operation, the 12.5 MA hybrid scenario, the 9 MA advanced scenario, and the half-field scenario with helium plasma that will be ITER's initial operating scenario. The effect of TBMs was assessed by carrying out the simulations in pairs: one including only the effect of ferritic inserts, and the other including also the perturbation due to TBMs. Both thermonuclear fusion alphas and NBI ions from ITER heating beams were addressed. The TBMs are found to increase the power loads, but the absolute values remain small. Neither do they produce any additional hot spots.
  •  
47.
  • Liu, Yueqiang, 1971, et al. (author)
  • Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
  • 2016
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:6, s. Art. no. 066001-
  • Journal article (peer-reviewed)abstract
    • Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.
  •  
48.
  • Schuster, Christian, et al. (author)
  • Moment-preserving and mesh-adaptive reweighting method for rare-event sampling in Monte-Carlo algorithms
  • 2021
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655 .- 1879-2944. ; 267
  • Journal article (peer-reviewed)abstract
    • We present novel roulette schemes for rare-event sampling that are both structure-preserving and unbiased. The boundaries where Monte Carlo markers are split and deleted are placed automatically and adapted during runtime. Extending existing codes with the new schemes is possible without severe changes because the equation of motion for the markers is not altered. These schemes can also be applied in the presence of nonlinear and nonlocal coupling between markers. As an illustrative application, we have implemented this method in the ASCOT-RFOF code, used to simulate fastion generation by radio frequency waves in fusion plasmas. In this application, with this method the Monte-Carlo noise level for typical fast-ion energies can be reduced at least of one order of magnitude without increasing the computational effort.
  •  
49.
  • Varje, J., et al. (author)
  • Effect of plasma response on the fast ion losses due to ELM control coils in ITER
  • 2016
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:4
  • Journal article (peer-reviewed)abstract
    • Mitigating edge localized modes (ELMs) with resonant magnetic perturbations (RMPs) can increase energetic particle losses and resulting wall loads, which have previously been studied in the vacuum approximation. This paper presents recent results of fusion alpha and NBI ion losses in the ITER baseline scenario modelled with the Monte Carlo orbit following code ASCOT in a realistic magnetic field including the effect of the plasma response. The response was found to reduce alpha particle losses but increase NBI losses, with up to 4.2% of the injected power being lost. Additionally, some of the load in the divertor was found to be shifted away from the target plates toward the divertor dome.
  •  
50.
  • Varje, J., et al. (author)
  • Synthetic diagnostic for the JET scintillator probe lost alpha measurements
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • A synthetic diagnostic has been developed for the JET lost alpha scintillator probe, based on the ASCOT fast ion orbit following code and the AFSI fusion source code. The synthetic diagnostic models the velocity space distribution of lost fusion products in the scintillator probe. Validation with experimental measurements is presented, where the synthetic diagnostic is shown to predict the gyroradius and pitch angle of lost DD protons and tritons. Additionally, the synthetic diagnostic reproduces relative differences in total loss rates in multiple phases of the discharge, which can be used as a basis for total loss rate predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view