SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vollmer Jürgen) "

Search: WFRF:(Vollmer Jürgen)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benson, Vitus, et al. (author)
  • Measuring tropical rainforest resilience under non-Gaussian disturbances
  • 2024
  • In: Environmental Research Letters. - 1748-9326. ; 19:2
  • Journal article (peer-reviewed)abstract
    • The Amazon rainforest is considered one of the Earth's tipping elements and may lose stability under ongoing climate change. Recently a decrease in tropical rainforest resilience has been identified globally from remotely sensed vegetation data. However, the underlying theory assumes a Gaussian distribution of forest disturbances, which is different from most observed forest stressors such as fires, deforestation, or windthrow. Those stressors often occur in power-law-like distributions and can be approximated by α-stable Lévy noise. Here, we show that classical critical slowing down (CSD) indicators to measure changes in forest resilience are robust under such power-law disturbances. To assess the robustness of CSD indicators, we simulate pulse-like perturbations in an adapted and conceptual model of a tropical rainforest. We find few missed early warnings and few false alarms are achievable simultaneously if the following steps are carried out carefully: first, the model must be known to resolve the timescales of the perturbation. Second, perturbations need to be filtered according to their absolute temporal autocorrelation. Third, CSD has to be assessed using the non-parametric Kendall-τ slope. These prerequisites allow for an increase in the sensitivity of early warning signals. Hence, our findings imply improved reliability of the interpretation of empirically estimated rainforest resilience through CSD indicators.
  •  
2.
  • Eriksson, Mimmi, et al. (author)
  • Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface
  • 2019
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:2, s. 2246-2252
  • Journal article (peer-reviewed)abstract
    • The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 μm. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.
  •  
3.
  •  
4.
  • Kohler, Jan, et al. (author)
  • Complex networks of interacting stochastic tipping elements : Cooperativity of phase separation in the large-system limit
  • 2021
  • In: Physical review. E. - 2470-0045 .- 2470-0053. ; 104:4
  • Journal article (peer-reviewed)abstract
    • Tipping elements in the Earth system have received increased scientific attention over recent years due to their nonlinear behavior and the risks of abrupt state changes. While being stable over a large range of parameters, a tipping element undergoes a drastic shift in its state upon an additional small parameter change when close to its tipping point. Recently, the focus of research broadened towards emergent behavior in networks of tipping elements, like global tipping cascades triggered by local perturbations. Here, we analyze the response to the perturbation of a single node in a system that initially resides in an unstable equilibrium. The evolution is described in terms of coupled nonlinear equations for the cumulants of the distribution of the elements. We show that drift terms acting on individual elements and offsets in the coupling strength are subdominant in the limit of large networks, and we derive an analytical prediction for the evolution of the expectation (i.e., the first cumulant). It behaves like a single aggregated tipping element characterized by a dimensionless parameter that accounts for the network size, its overall connectivity, and the average coupling strength. The resulting predictions are in excellent agreement with numerical data for Erdos-Renyi, Barabasi-Albert, and Watts-Strogatz networks of different size and with different coupling parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view