SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vondráček Jan) "

Search: WFRF:(Vondráček Jan)

  • Result 1-34 of 34
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Brenerová, Petra, et al. (author)
  • Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells
  • 2016
  • In: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 23:3, s. 2099-2107
  • Journal article (peer-reviewed)abstract
    • The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 mu M), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.
  •  
7.
  •  
8.
  •  
9.
  • Ficker, Ondrej, et al. (author)
  • Long slide-away discharges in the COMPASS tokamak
  • 2016
  • In: Proceedings of the 58th Annual Meeting of the APS Division of Plasma Physics. ; 61:18, s. GP10.00101-
  • Conference paper (other academic/artistic)abstract
    • In this contribution, long runaway electron (RE)dominated discharges achieved in the COMPASS tokamak are presented. The extensivelength is possible due to a low consumption of available volt-seconds of thetokamak transformer in this type of discharge. Energetic electron losses in thisregime seems to be modulated mainly by small oscillations of a radial position (controllersetting) unlike in the RE discharges at higher electron density, where variousMHD phenomena affect the evolution of the losses. The behaviour of the slide-awayplasma is studied using magnetic coils, HXR detectors, ECE system and a pair of3He proportional counters of neutrons. The plasma scenario is also modelled usingFokker-Planck codes.
  •  
10.
  •  
11.
  •  
12.
  • Ghorbanzadeh, Mehdi, et al. (author)
  • In vitro and in silico derived relative effect potencies of Ah-Receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX Cell Lines
  • 2014
  • In: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 27:7, s. 1120-1132
  • Journal article (peer-reviewed)abstract
    • For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached,(REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALLTX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silica derived REP20TCDD values were generally consistent with the WHO-TEFs with a few exceptions. The QSAR models indicated that, e.g., 1,2,3,7,8-pentachlorodibenzofuran and 1,2,3,7,8,9-hexachlorodibenzofuran were more potent than given by their assigned WHO-TEF values, and the non-ortho PCB 81 was predicted, based on the guinea-pig model, to be 1 order of magnitude above its WHO-TEF value. By combining in vitro and in silico approaches, REPs were established for all WHO-TEF assigned compounds (except OCDD), which will provide future guidance in testing AhR-mediated responses of DLCs and to increase our understanding of species variation in AhR-mediated effects.
  •  
13.
  • Hamers, Timo, et al. (author)
  • In Vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans
  • 2011
  • In: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 121:1, s. 88-100
  • Journal article (peer-reviewed)abstract
    • The toxic equivalency concept used for the risk assessment of polychlorinated biphenyls (PCBs) is based on the aryl hydrocarbon receptor (AhR)-mediated toxicity of coplanar dioxin-like (DL) PCBs. Most PCBs in the environment, however, are non-dioxin-like (NDL) PCBs that cannot adopt a coplanar structure required for AhR activation. For NDL-PCBs, no generally accepted risk concept is available because their toxicity is insufficiently characterized. Here, we systematically determined in vitro toxicity profiles for 24 PCBs regarding 10 different mechanisms of action. Prior to testing, NDL-PCB standards were purified to remove traces of DL compounds. All NDL-PCBs antagonized androgen receptor activation and inhibited gap junctional intercellular communication (GJIC). Lower chlorinated NDL-PCBs were weak estrogen receptor (ER) agonists, whereas higher chlorinated NDL-PCBs were weak ER antagonists. Several NDL-PCBs inhibited estradiol-sulfotransferase activity and bound to transthyretin (TTR) but with much weaker potencies than reported for hydroxylated PCB metabolites. AhR-mediated expression of uridine-glucuronyl transferase isozyme UGT1A6 was induced by DL-PCBs only. Hierarchical cluster analysis of the toxicity profiles yielded three separate clusters of NDL-PCBs and a fourth cluster of reference DL-PCBs. Due to small differences in relative potency among congeners, the highly abundant indicator PCBs 28, 52, 101, 118, 138, 153, and 180 also contributed most to the antiandrogenic, (anti)estrogenic, antithyroidal, tumor-promoting, and neurotoxic potencies calculated for PCB mixtures reported in human samples, whereas the most potent AhR-activating DL-PCB-126 contributed at maximum 0.2% to any of these calculated potencies. PCB-168 is recommended as an additional indicator congener, given its relatively high abundance and antiandrogenic, TTR-binding, and GJIC-inhibiting potencies.
  •  
14.
  • Heindel, Jerrold J., et al. (author)
  • Obesity II : Establishing causal links between chemical exposures and obesity
  • 2022
  • In: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 199
  • Research review (peer-reviewed)abstract
    • Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
  •  
15.
  •  
16.
  • Henthorn, Nicholas T., et al. (author)
  • Mapping the Future of Particle Radiobiology in Europe : The INSPIRE Project
  • 2020
  • In: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Journal article (peer-reviewed)abstract
    • Particle therapy is a growing cancer treatment modality worldwide. However, there still remains a number of unanswered questions considering differences in the biological response between particles and photons. These questions, and probing of biological mechanisms in general, necessitate experimental investigation. The "Infrastructure in Proton International Research" (INSPIRE) project was created to provide an infrastructure for European research, unify research efforts on the topic of proton and ion therapy across Europe, and to facilitate the sharing of information and resources. This work highlights the radiobiological capabilities of the INSPIRE partners, providing details of physics (available particle types and energies), biology (sample preparation and post-irradiation analysis), and researcher access (the process of applying for beam time). The collection of information reported here is designed to provide researchers both in Europe and worldwide with the tools required to select the optimal center for their research needs. We also highlight areas of redundancy in capabilities and suggest areas for future investment.
  •  
17.
  •  
18.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
23.
  • Larsson, Malin, et al. (author)
  • Consensus Toxicity Factors for Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls Combining in Silico Models and, Extensive in Vitro Screening of AhR-Mediated Effects in Human and Rodent Cells
  • 2015
  • In: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 28:4, s. 641-650
  • Journal article (peer-reviewed)abstract
    • Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.
  •  
24.
  •  
25.
  •  
26.
  • Lustig, Robert H., et al. (author)
  • Obesity I : Overview and molecular and biochemical mechanisms
  • 2022
  • In: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839. ; 199
  • Research review (peer-reviewed)abstract
    • Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis " (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Stock, M., et al. (author)
  • Harmonization of proton treatment planning for head and neck cancer using pencil beam scanning: first report of the IPACS collaboration group
  • 2019
  • In: Acta Oncologica. - : Informa UK Limited. - 0284-186X .- 1651-226X. ; 58:12, s. 1720-1730
  • Journal article (peer-reviewed)abstract
    • Background and purpose: A collaborative network between proton therapy (PT) centres in Trento in Italy, Poland, Austria, Czech Republic and Sweden (IPACS) was founded to implement trials and harmonize PT. This is the first report of IPACS with the aim to show the level of harmonization that can be achieved for proton therapy planning of head and neck (sino-nasal) cancer. Methods: CT-data sets of five patients were included. During several face-to-face and online meetings, a common treatment planning protocol was developed. Each centre used its own treatment planning system (TPS) and planning approach with some restrictions specified in the treatment planning protocol. In addition, volumetric modulated arc therapy (VMAT) photon plans were created. Results: For CTV1, the average D-median was 59.3 +/- 2.4 Gy(RBE) for protons and 58.8 +/- 2.0 Gy(RBE) for VMAT (aim was 56 Gy(RBE)). For CTV2, the average D-median was 71.2 +/- 1.0 Gy(RBE) for protons and 70.6 +/- 0.4 Gy(RBE) for VMAT (aim was 70 Gy(RBE)). The average D-2% for the spinal cord was 25.1 +/- 8.5 Gy(RBE) for protons and 47.6 +/- 1.4 Gy(RBE) for VMAT. The average D-2% for chiasm was 46.5 +/- 4.4 Gy(RBE) for protons and 50.8 +/- 1.4 Gy(RBE) for VMAT, respectively. Robust evaluation was performed and showed the least robust plans for plans with a low number of beams. Discussion: In conclusion, several influences on harmonization were identified: adherence/interpretation to/of the protocol, available technology, experience in treatment planning and use of different beam arrangements. In future, all OARs that should be included in the optimization need to be specified in order to further harmonize treatment planning.
  •  
33.
  • Strapáčová, Simona, et al. (author)
  • Relative effective potencies of dioxin-like compounds in rodent and human lung cell models
  • 2018
  • In: Toxicology. - : Elsevier. - 0300-483X .- 1879-3185. ; 404–405, s. 33-41
  • Journal article (peer-reviewed)abstract
    • Toxicity of dioxin-like compounds (DLCs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls, is largely mediated via aryl hydrocarbon receptor (AhR) activation. AhR-mediated gene expression can be tissue-specific; however, the inducibility of AhR in the lungs, a major target of DLCs, remains poorly characterized. In this study, we developed relative effective potencies (REPs) for a series of DLCs in both rodent (MLE-12, RLE-6TN) and human (A549, BEAS-2B) lung and bronchial epithelial cell models, using expression of both canonical (CYP1A1, CYP1B1) and less well characterized (TIPARP, AHRR, ALDH3A1) AhR target genes. The use of rat, murine and human cell lines allowed us to determine both species-specific differences in sensitivity of responses to DLCs in lung cellular models and deviations from established WHO toxic equivalency factor values (TEF) values. Finally, expression of selected AhR target genes was determined in vivo, using lung tissues of female rats exposed to a single oral dose of DLCs and compared with the obtained in vitro data. All cell models were highly sensitive to DLCs, with murine MLE-12 cells being the most sensitive and human A549 cells being the least sensitive. Interestingly, we observed that four AhR target genes were more sensitive than CYP1A1 in lung cell models (CYP1B1, AHRR, TIPARP and/or ALDH3A1). We found some deviations, with strikingly low REPs for polychlorinated biphenyls PCBs 105, 167, 169 and 189 in rat RLE-6TN cells-derived REPs for a series of 20 DLCs evaluated in this study, as compared with WHO TEF values. For other DLCs, including PCBs 126, 118 and 156, REPs were generally in good accordance with WHO TEF values. This conclusion was supported by in vivo data obtained in rat lung tissue. However, we found that human lung REPs for 2,3,4,7,8-pentachlorodibenzofuran and PCB 126 were much lower than the respective rat lung REPs. Furthermore, PCBs 118 and 156 were almost inactive in these human cells. Our observations may have consequences for risk assessment. Given the differences observed between rat and human data sets, development of human-specific REP/TEFs, and the use of CYP1B1, AHRR, TIPARP and/or ALDH3A1 mRNA inducibility as sensitive endpoints, are recommended for assessment of relative effective potencies of DLCs.
  •  
34.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-34 of 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view